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Introduction

ab-initio -- from the beginning
The Concise Oxford Dictionary. Oxford University Press,
2001

ab-initio calculation -- A method of calculating atomic
and molecular structure directly from the first principles of
guantum mechanics, without using quantities derived from
experiment (such as ionization energies found by
spectroscopy) as parameters.

A Dictionary of Chemistry. Oxford University Press, 2000.



Classical vs Ab-Initio Methods

CLASSICAL METHODS

AB-INITIO METHODS

Phenomenological potential
energy surface (typically two
body contributions)

Potential energy surface
calculated directly from the
Schrodinger equation (many-body
terms included automatically)

Difficult to describe bond
breaking/making

Describes bond breaking/making

Jy & . - e &
AIMD simulation of U(VI)-U(VI)
dimerization on solvated
Mackinawite surface(300°K)

Electronic properties are not
available

Electronic spectra included in
calculation

Can do millions of particles

Limited to 1500 atoms with
significant dynamics

gledier range ol wdsk Coulllts, we reaucecud uie |
of MPI tasks per node below 16. This nece
restricting the number of threads to one thread/M!
to ensure that each MPI task could use more n
but not more than one core for its computatic
resulting strong scaling curve is plotted in Fig.
reduced efficiency at high number of MPI tasks is
due to the fact that building the linear system w
principal submatrix becomes more expensive (mor
to communicate with) and is used less efficiently.
there is an average of 8, 4, 2, 1 and 0.5 columns t
for, respectively, for the number of tasks utilized




Many-Electron Problem

* Many-electron Hamiltonian

A = _%Zvi +lzvi0n(”i)+2 . i’?

1>]

» Schrodinger equation

HY = EW




Many-electron wavefunction

= Antisymmetrical (Pauli exclusion principle)
lp(’/iarz)= —‘P(l"z,fi)
 Slater determinants expansion

W(rareoory)= N A, (i, (), ()

i1 <iy<...<ly

* Example: two particle system

W) = S (i ()=, 0 ()

i<j



Variational Principle

« Formally equivalent to Schrodinger equation

N

C[(WH|P) A
E=n}p1n<<lp‘lp>> ) Yo EY

* In practice minimization is always preformed over
some restricted space

« Example Methods — HF, Cl, MCSCF, CCSD,...



Hartree-Fock (HF) Method

= Wavefunction as a single Slater determinant
W (1, 1y ar ) = Al (7 s ()., (1) )]

 Variational Principle

2w ) <o,

« Hartree-Fock Equations

—IV +vU, Ef|z/j 1 %(’”)‘E%(”)f .

r=r|




Perturbation Approach

* |dentify solvable reference part and the perturbation

=0+l

pert

* Expand in powers of A
2
E=E.  +AE +LE) +--

* All corrections are expressed in terms of H
Moller-Plesset perturbation theory (MP2,...)



Density-Functional Theory (DFT)

1) Hohenberg-Kohn theorem(s) : n(r) - W(r1,r2,r3,...)
« Kohn-Sham DFT starts assumes n(r ) expanded in terms of non-

Interacting orbitals
* n()EXELTNE[YL T2

2) DFT as a self-consistent perturbation theory
Reference Hamiltonian perturbation

};ﬁ—};vﬁ(m]

]:[ = —%E[Vlz +Uion(7§>+veﬁ”(7;)]+

i>]

The effective potential is adjusted to bring the reference system
closer to the real system and thus minimize the expansions errors

M. Valiey, E. J. Bylaska, A. Gramada, and J. H. Weare, Reviews in
Modern Quantum Chemistry, page 1684 (World Scientific, Singapore, Dec. 2002).



Optimal Effective Potential

E=E. +AE +XE,+...+ AE

OAE

Optimal Density of the reference
Effective system coincides with true
Potential density




Exchange-correlation potential

2y 0)- [0, 1)

‘I"—I"

How to determine v (r)

- perturbation expansion (OEP, etc)

* slow varying density approximation (LDA)

« semi ad hoc guesses fitted to an experimental data
(GGA, B3LYP,...)



Kohn-Sham Equations

* Nonlinear eigenvalue problem

* Require self-consistent solution



Self-Consistent Loop

Trial Wavefunction {z//l}

{Density n(r)= 2 .2 }

Potentials

g 0)- R s o)
N /

A 4

[Kohn-Sham Equations

A 4

{New Wavefunction }




Conclusion

= Ab-initio methods can solve problems which are outside the scope of
classical simulations.

= Ab-initio methods are demanding in terms of computing resources
= Density-functional methods provide a good mix of accuracy and efficiency

= Parallel computers and software ( e.g. NWChem) are a must for practical
applications of ab-initio methods.



Introduction to Plane-Wave Basis
Sets and Pseudopotential Theory
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Kohn-Sham Equations

» Nonlinear eigenvalue equations

(_ lvz TV, TUy [n]+ U, [n])wl = eiz/ji

2
n(r) = 2

» Require self-consistent solution

» In order to solve these equations we need to expand
the wavefunctions W in a basis set

Y, = 2 CoPu
’ 16

2

Y,



Gaussian DFT Versus Plane-Wave DFT

Gaussian Basis Set
Parallel Efficient

All-Electron

= (Core regions included in calculation

= First row transition metals can readily
be calculated

Ab Initio MD expensive
= Pulay forces

Different basis sets for molecules and
solids

High-Level Methods worked out

17

PlaneWave Basis Set
Parallel Efficient

Requires pseudopotentials to be efficient
= Not all-electron
= Core region not included

=  First row transition metals are difficult

* Norm-conserving pseudopotentials of
the nodeless 3d states require large
plane-wave basis sets

» Significant overlap between the
valence 3d states and core densities

Efficient Ab Initio MD
=  (Car-Parrinello
Same basis set for molecules and solids

Still work to be done to make High-level
methods work well




Plane-Wave Basis Sets

System 1s assumed to be placed inside a unit cell defined by the
unit vectors

/ a,
d,

a,

The volume of the unit cell 1s

Q= [ﬁl,ﬁz,ﬁ3]= a, - (a, x a,)

18



Plane-Wave Basis Sets

— —

y =r+R

where

—

R =na, +n,a, +n,a,,

19

n,,n,,n; =1ntegers



Plane-Wave Basis Sets

— 7

u, (I” ) = % E ?,/7n (é)elé Plane-wave Expansion
G

Since are system is periodic our plane-wave
expansion must consist of only the plane-waves ¢
that have the periodicity of the lattice,

iGr

We can determine these plane-waves from the
following constraint

iG-7+R) iGF

€ = €
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Plane-Wave Basis Sets

It is easy to show from the periodicity constraint that
the wave-vectors can be defined in terms of the

following reciprocal lattice vectors

[;1 . a, Xd;,
Q2

~ a,xd . .

b, =2mx—— Reciprocal lattice vectors
Q2

b, = 2x =%

=

Q2

Wave-vectors that satisfy the periodicity of the lattice
= . N\ (. N,\r . N\~
G,.. = (ll ——1)191 + (12 ——2)192 + (13 ——3)193

1°2%3 2 2 2

21



Plane-Wave Basis Sets

The exact form of the plane-wave expansion used in plane-
wave code is

1 3 — iG.. . F
u (F)=—— E U (G )e s
n n\"" s
JQ &~ &~

The upper-limits of the summation (N,,N,,N5) control the
spacing of the real-space grid

I I I
v =l—=-3la,+|—-5|a, +| —=—-5|a
Ijiyl3 2 1 2 2 2 3
(N1 ) (N2 ) (N3 )
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Plane-Wave Basis Sets

There is a further truncation of plane wave expansion in plane-
wave calculations. Namely, only the reciprocal lattice vectors

whose kinetic energy lower than a predefined maximum cutoff
energy,

11 =12
5 ‘G‘ < Ecut Wavefunction Cutoff Energy

are kept in the expansion, while the rest of the coefficients are set
to zero. Besides reducing the computational load, this truncation
strategy limits the effects of unit cell orientation on the outcome of
the calculation.

DFT calculations rarely use a completely converged plane-wave
basis, but that convergence is usually unnecessary. However,
incomplete basis set calculations using different cell sizes require
that each calculation use the same E_,;

23



Plane-Wave Basis Sets

Since the density is the square of the wavefunctions, it can
vary twice as rapidly. Hence for translational symmetry to be
formally maintained the density, which is also expanded using

plane-waves

o(F)= 3P, (7)= 3 (G

Should contain 8 times more plane-waves than the
corresponding wavefunction expansion

| =
—|G
2

Often the Density cutoff energy is chosen to be the same as

the wavefunction cutoff energy — This approximation is known

as dualling

2
< 4Ecut Density Cutoff Energy

24



Plane-Wave Basis Sets

. 4
rd 4

// // 7’ //
. L s . g <
g
 gi— 4
- - A— i
*__- { ™~
/ Ll ]
- AL e L
P ~
P . . . .
e e e 7’ 4
7z 4 4 7 4 e
e
x°

Periodic
Boundaries

In solid-state systems, the plane-wave expansion given by
- 1 ~ (=) iG7
u, (r) = —— Z u, (G)elG " G—point Plane-wave Expansion
VQ G

is not complete. Based on the fact that the translation operators T(R)
are compatible with the Hamiltonian of the system, [T(R),H]=0, and
that not all eigenkets of T(R) can be expanded strictly in terms of the
set of eigenkets |u,>. The wavefunction expansion can be

generalized
) =)

Where k are all the allowed wave-vectors in the primitive cell of the
reciprocal lattice.

un> or . (17) = eﬂgfun (F) Bloch’s Theorem
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Motivations for Pseudopotential
Method

Valence wavefunction behavior in a typical molecular system

Atomic sphere region. Interstitial region:

E CoPu (r) Z Ckeik“r

a
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Pseudopotential Method

atomic sphere Valence wavefunctions can be divided into two regions

@ interstitial region \@

atomic sphere

‘l/jv>=‘1/7V>_2|C><C‘1/7v> I(D:;id;pizznt;alsE ~v> k

Core electrons removed

Strong 1onic potential is replaced by a weak pseudopotential
Valence electrons are described via a smooth pseudowavefunctions
Loss of wavefunction in core region

3d valence states are not well screened

27



Pseudopotential Method

The pseudopotential method is based on two observations. First, in
almost any system one could identify a set of the so-called core orbitals
which change little from their atomic counterparts. Second, the remainder,
the so-called valence orbitals, acquire their oscillating behavior mainly due
to Pauli exclusion principle or, in plain words, orthogonality constraints to
the core orbitals. In pseudopotential approximation the original atoms that
constitute a given chemical system are modified by removing core energy
levels and enforcing the Pauli exclusion principle via repulsive
pseudopotential. This removes the wiggles from the atomic valence
orbitals and allows efficient application of plane wave basis set expansion.
The resulting pseudoatoms will in general acquire a nonlocal potential

term. )
ER)R)-F) | e

28



Pseudopotential Method

There are many other ways to define VR such that H+VR has the same valence
eigenvalues as the actual Hamiltonian.

Hamann et al. proposed a simple procedure to extract pseudopotentials from
atomic calculations, these potentials are designed to have the following
properties:

Real and pseudo valence eigenvalues agree for a chosen “prototype” atomic configuration
Real and pseudo atomic valence wavefunctions agree beyond a chosen “core radius™ r,
Real and pseudo valence charge densities agree for r>r,

Logarithmic derivatives and the first energy derivatives agree for r>r,

v v Vv

v

This class of pseudopotentials are called norm-conserving pseudopotentials

29



Constructing a Pseudopotential

Step 1: Solve all-electron eigenvalues and wavefunctions for a reference atom

Step 2: Construct pseudo wavefunction from the all-electron wavefunctions,

such that:
*Real and pseudo eigenvalues agree
*Real and pseudo atomic valence wavefunctions agree beyond a chosen
“core radius” rc
*Real and pseudo valence charge densities agree for r>rc
*Logarithmic derivatives and the first energy derivatives agree for r>rc

Step 3: Invert the atomic Schrodinger Equation to obtain a screened
pseudopotential

Step 4: Generate an ionic pseudopotential from the screened
pseudopotentials

Step 5: Transform the semi-local potential to a non-local form (Kleinman-
Bylander)

30



PAW method
Free-space Boundary Conditions

e—e

o ff”(f )”Ef )irar
29 ‘r —r

* Technique to implement free-space boundary
conditions into plane-wave methods

Figure: accuracy of free-space methods

1e+00 14

1e-02 -

1e-04 -

E.J. Bylaska et al, J.Phys.Chem, 100, 6966 (1996). i | — foraa
E.J. Bylaska et al, Comp. Phys. Comm. 5 teos | \‘\ 7 Kemel g 17
* Allows us to calculate charged systems . LY
: .. | N
* Implementing Free-Space boundary condition Y
does not significantly degrade performance of b Vi
plane-wave codes. - |
* Technique implemented into PAW code. NN
Table 3: Fe’' multiplet structure
PAW/10IRy | NWChem/VTZ PSPW/131Ry |  CAS(5e,5d)/ecdp Exp.
X-°X 33 eV 3.0 eV 6.2 eV _ 4.6eV 4.1eV
X-°X 4.8 eV 4.6 eV 9.1eV 6.6eV

** semi-core corrections not included.
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Aperiodic Convolution: Working in the [-L,L)? domain

‘ Neyrended 1)

‘ Eextended( 1)
] lo)
O Q O
Q (o} Q
o o o o] Q o
O o] Q o]
Coco® Coco®
| | |
| |
Vhextended (4) = Zxtended (i-4) * Nextended () 2L
Q (o}

32

Lack of accuracy comes

from cusp in cutoff
Coulomb kernel

Cutoff Coulomb Kernel

glr)=1

2,(G)=]

A

Z g.(G)e " forlr|<R,, -8
1

— otherwise
ri

2
2n(R,. ] for|G| = 0

> (1 - cosQG‘szax )) otherwise

L (

V2

simple cubic)

= TL (face - centered cubic)

J3

TL (body - centered cubic)

0 = small constant



Car-Parrinello Molecular Dynamics

Moral: "A man dreams of a miracle and
wakes up with loaves of bread”

2XNWChem Erich Maria Remarque

a -
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Molecular Dynamics Loop

(1) Compute Forces on atoms, F(t) for current
atomic configuration, R(t)

Fi(t) <

ecalculate using classical potentials

(can do large systems and long simulation times)
calculate directly from first principles by solving many-
electron Schrodinger equations

(can treat very complex chemistry, but simulations times
are very long)

\
(2) Update atom positions using Newtons laws
‘R,(t+At) € 2*R|(t) — R (t-At) + At?/(M))*F (1)
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Basic Features of Ab Initio Molecular Dynamics

DFT Equations
Hy, =&y,
1

—EVZ +V, (r)+‘7NL +V,[p](r)

+{1=a)V,[p](r)+V.[p](r)

Hy,(r)=

Y, (r)‘ang(r)wj(r

CP dynamics: lon and wavefunction
motion coupled. Ground state energy

MR, =F, F = E<z/jz| R |¢z> Plane-wave basis sets,
i=1 I pseudopotentials are used to solve
PDE

Want to do this in ~1second per step

35



Pitfalls of Ab Initio Molecular Dynamics

36

Expensive?

Energy Conservation — Born-Oppenheimer Error
dE/dR = (6E/Sc)(dc/dR) + 0E/6R

“Attempts to implement such a dynamical scheme in a
straightforward fashion prove to be unstable. Specifically, the atomic
dynamics do not conserve energy unless a very high degree of
convergence in the electronic structure calculation is demanded. If
this is not done the electronic system behaves like a heat sink or

7

source.......
-- Remler and Madden



%, S, Energy Surface from QMD Simulation

S, QMD run
10"
conv
N L_F_I__l_“.l J__,I—__I 1 L 1 I I | I 1 1 I | I I 1 I 1 I 1 I 1 I I:

3471.1 R — — = ——_—3471.1
3471F - 3471
34709 13470.9
34708 — 34708
34707 — 3470.7
3470.6 — 3470.6
34705 —3470.5
34704 — 34704
34703 —3470.3
34702 F — 34702
34701 : 1 1 1 1 I 1 1 1 1 I 1 | 1 I 1 1 1 1 I 1 1 1 1 I 1 | 1 1 I 1 1 l: 3470.1

0 0.025 0.05 0.075 0.1 0.125 0.15
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Car-Parrinello Dynamics

Car and Parrinello L = E : u E LM R’
suggested that ionic
dynomlcs.coulq b.e. run in 4 E[{Z/J,}a {R } Constramts]

parallel with a fictitious
electronic dynamics via
the following Lagrangean

» Amazingly these equations of motion result in a
conservative ionic dynamics that is extremely close to
the Born-Oppenheimer surface.

» I he electronic system behaves quasi—adiabatically.
That is the electronic system follows the ionic system
and there is very little additional motion wandering away

from the Born-Oppenheimer surface.
38



Example 1b: S, molecule LDA Car-Parrinello
Simulation.

title "S2 MD LDA/25Ry"
start s2Z2.md
geometry
S 0.0 0.0 0.0
S 0.0 0.0 1.95
end
pPSpw
car-parrinello
time step 5.0 #Typically between 1 and 20
fake mass 600.0 #Typically between 300 and and 1500
loop 10 100
end
mult 3
end
set nwpw:minimizer 2
task pspw energy

task pspw car-parrinello
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°%, S, Energy Surface from Car-Parrinello Simulation

Car-Parrinello and exact Born-Oppenheimer surfaces of triplet S2 dimer simulation

|
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Energy Conservation

Total Energy Conservation of triplet S2 simulation

-2.042811090e+01 T l T T | T T

-2.042811095e+01 — —

-2.042811100e+01 — =

-2.042811105e+01 —

Total Energy (a.u.)

-2.042811110e+01 —

-2.042811115e+01 — —

2.042811120e+01 ' ' ! | . l ! I !
0 1000 2000 3000 4000 5000

time (a.u.)



Born-Oppenheimer Error

Error (a.u.)

1e-05

8e-06

6e-06

4e-06
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-4e-06

-6e-06

-8e-06

Born-Oppenheimer surface error in Car-Parrinello triplet S2 dimer simulation
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lonic and Ficticious Electronic Kinetic Energies

lon and Electronic Kinetic Energies of triplet S2 simulation
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A Closer look at Born-Oppenheimer and Car-Parrinello

44

Adiabicity is not built into the Car-Parrinello equations of motion. As pointed
out by Remler and Madden

“equipartion principle tells us that the average kinetic energies of all degrees of freedom in
the classical system will be equal at equilibrium. The adiabatic state, in which the ficticious
system is at a very low temperature and the ionic system is hot is therefore metastable.”

The metastable motion is the result of a good start-up procedure and the
overlap of the ficticious electronic motion with the ionic motion must be small
(i.e. Start simulation on BO surface! Also, standard CP works best for large
band gap systems)

Total ionic momentum is NOT rigorously conserved
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