Inverse and hybrid approaches for disordered solids

DAVID DRABOLD, PARTHA BISWAS, D. K. LIMBU, R. ATTA-FYNN, D. TAFEN, ANUP PANDEY, BISHAL BHATTARAI, RAJENDRA THAPA

Logic…

E. T. Jaynes 1922-1998

- 1) Conventional approach: Do your best simulation (big cell, fancy interactions, long simulation times, etc). *This is very different from the way the material was really made!* Compare to experiment, hope for the best. Write the paper.
- 2) There may be other information that would improve the realism of the simulation - experimental, chemical or other information not included. *Why not use it in making the model?!*

Modeling paradigms and imposing *a priori* information

- **1) Simulation**: Implement your best calculation (big cell, fancy interactions, long time evolution, *etc*). *Hope* that the results look like experimental ones.
- **2) Information:** Try to invert the experimental data.
- **3) Merge the two**: carry out simulation but impose the *a priori (*possibly experimental) information
as part of the simulation.

Reverse Monte Carlo

- **Information paradigm.** What does experiment *imply about the structure?*
- \blacktriangleright "Reverse Monte Carlo": put atoms in a supercell, move at random with Monte Carlo, keep moves if closer to experiment, accept with Metropolis probability if worse.

 \blacktriangleright Result: matches experiment by construction, but diffraction data **alone** is **insufficient** to produce a chemically realistic model. *Still, it is a clever idea*

RMC: Discussion

Promising if additional information (constraints) are employed.

Exible, enables inclusion of a priori information.

 \blacktriangleright Constraints are tricky: we are imposing information, but we are potentially imposing errors – *the model is only as good as the information employed*!

RMC: order from chaos

Credit: **Partha Biswas (about 2005)**

Experimentally Constrained Molecular Relaxation (ECMR)

▶ We want to include experimental data in MD: **merge RMC and**

Start from "experimentally realistic" subspace, self-consistently iterate between RMC and first principles relaxation.

P. Biswas, *et al.,* J. Phys. Cond. Matt. **16**, S5173 (2004); PRB **71** 054204 (2005)

ECMR: *implementation*

Flow chart for ECMR Cartoon suggesting

ECMR convergence

$ECMR$ & $GeSe₂$

- \blacktriangleright GeSe₂: Classic chalcogenide glass, hard to model well, especially first sharp diffraction peak.
- \blacktriangleright Lets try ECMR:

Experimental input: Petri and Salmon partial structure factors.

Hamiltonian: Density functional, minimal basis, supercell with 648 atoms in unit cell.

$ECMR: g-GeSe₂$ results

Static structure factor

Electronic structure: density of states

Note: a valid structural model **must** have a realistic electronic DOS.

 $GeSe₂$

ECMR: improving the convergence

- u ECMR is great *if it converges*!
- Rather than doing a sequence of full relaxations, perform partial inversions, followed by partial relaxations.
- \blacktriangleright Iterate THAT!
- \blacktriangleright Seems to be more robust than ECMR.

Beyond ECMR: Force Enhanced Atomic Refinement (FEAR)

 \blacktriangleright Start with random model (assume density is known)

 \blacktriangleright Repeat to these two steps convergence:

-- Obtain N accepted moves from RMC [drives model toward experiment]

-- Take M conjugate gradients steps with energy functional [enforce chemistry]

Typically N~100, M~1-5. Always N>>M.

A. Pandey, B. Bhattarai, P. Biswas, DAD

Force Enhance Atomic Refinement (FEAR)

Pandey et. al, Phys.RevB 94, 235208 (2016)

Example: FEAR for amorphous $SiO₂$

Adopt 648-atom, 1536-atom models.

- ▶ Use the van Beest (BKS) potential (PRL, 1990). Start with **random** coordinates.
- After 100 successful RMC moves, move all the atoms along van Beest gradient – only one step, *not a full minimization.*
- **Repeat previous until convergence (fit and force) is achieved.**
- Need about 30,000 force calls

A. Pandey, P. Biswas, DAD Phys Rev B 92 155205 (2015)

FEAR of silica

FEAR: minimization of error vs. experiment and total energy.

Results: silica

Ab initio FEAR – use DFT (VASP or SIESTA) as energy functional

Key to making a general method – to structurally invert a very wide range of materials from diffraction – need general accurate interatomic interactions to unbiased provide chemical information.

First example: silicon and SIESTA

RMC Melt Quench FEAR

Melt-Quench

Blue: 4-fold *Green, Red are coordination defects*

FEAR

Pandey et. al, Scientific reports 6,33731(2016), JNCS J. Non-Cryst. Sol 492 27 (2018).

FEAR: a-Si animation and details

Force-enhanced Atomic Refinement:

 $RED : Si (< 4)$

Evolution of 216-atom model amorphous Si starting from random initial configuration with beige sphere representing (correctly coordinated) four-fold atoms, green over-coordinated and red under-coordinated.

GREEN : Si (>4)

BEIGE : Si (=4)

15

Example: Amorphous carbon across densities

- \blacktriangleright Hard: Carbon happily sp³, sp² or even sp bonds. Need a good potential.
- \blacktriangleright Wealth of experiments to check against.
- \blacktriangleright We carry this out with largish models (up to 800 atoms), SIESTA as energy functional. Then relax final models with VASP (little change).

Amorphous Carbon across densities

Purple (sp3), Orange (sp2), Green (sp)

Bhattaraii, Pandey & DAD, Carbon, 131 168 (2018)

Amorphous Carbon

Bhattarai et. al, Carbon (2018)

Low density (0.95 gm/cc) FEAR Carbon (800-, 648-atom models) **Purple (sp3), Orange (sp2), Green(sp)**

Bhattarai et al, PCCP, 2018

A prediction: EXAFS of 0.95gm/cc a-C. Fairly small differences…

Comment

▶ Amorphous C with density near 1 gm/cc is a **form of three-dimensional graphene: warped, wrapped sp2 sheets including ring disorder (pentagons, hexagons, heptagons) and also with sp and sp3 defects**.

Structural Comparison

Bhattarai et. al, PRL submitted(2018)

Electronic and VibrationalProperties

FEAR: Ag-doped chalcogenides, $[(GeSe₃)_{1-x}Ag_x]$ x=0.05,0.077] data: Zeidler and Salmon (Bath) VASP, A. Pradel group (Montpellier)

100

80

60 χ^2

40

Conclusion (FEAR)

• Efficient: Fewer calls to force code.

- Robust convergence: Really works [a-Si, a-C (0.95-3.5 gm/cc), GeSeAg materials]. We're trying a metallic glass, fiddling with $EXAFS$ too -- $Pd_{40}Ni_{40}P_{20}$ (nothing to report yet!). Used empirical pots, tight-binding, SIESTA and VASP. Routinely produces (slightly) lower total energies than a reasonable melt quench.
- Easy: if you know RMC and VASP, this is essentially a shell script.
- It is GENERAL.