

Monte Carlo Methods: An Introduction

Parthapratim Biswas

Physics and Astronomy The University of Southern Mississippi

Monte Carlo Simulation M[SF](#page-19-0) Summer School 2019 1 June 4, 2019 1/19

 Ω

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ │ 듣

- Monte Carlo integration \bullet
- Direct and importance sampling \bullet
- Random numbers and probability distributions \bullet
- Function optimization in high-dimensional spaces \bullet
- Metropolis and related algorithms \bullet
- Monte Carlo simulation of (disordered) solids \bullet

 Ω

- Monte Carlo integration \bullet
- Direct and importance sampling \bullet
- Random numbers and probability distributions \bullet
- Function optimization in high-dimensional spaces \bullet
- Metropolis and related algorithms \bullet
- Monte Carlo simulation of (disordered) solids \bullet

Monte Carlo, Casino, and random numbers are all related!

◀ ㅁ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로

 Ω

Monte Carlo integration

Key problem: How to choose of x_i from $[a, b]$?

Observarions

- In one- and two-dimensional spaces, efficent numerical schemes exist. \bullet
- Think of Newton-Cotes (Traphezoidal and Simpson rules) and Gaussian quadrature
- Curse of high dimensions (except for mean-field theorists!) \bullet

Direct vs. Indirect sampling

$$
\langle f \rangle \approx \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} f(x_i, y_j)
$$

- Only two regions contribute to the integral above \bullet
- Direct sampling is inefficient (random or uniform grid) in higher dimensions \bullet
- Prior knowledge of the region(s) of *importance* can help significantly \bullet

Key idea

Instead of direct sampling, find a target density that largely defines over the region(s) of importance

Monte Carlo Simulation and [N](#page-0-0)[SF](#page-19-0) Summer School 2019 and June 4, 2019 4 / 19

1章

つへへ

イロト イ団 ト イミト イミト

Importance sampling

Elementary concepts

$$
I = \int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{f(x)}{g(x)} g(x) dx = \int_{y^{-1}(a)}^{y^{-1}(b)} \frac{f(x)}{g(x)} dy, \text{ where } y(x) = \int_{a}^{x} g(t) dt
$$

- Choose a suitable $g(x)$ close to $f(x)$ \bullet
- Sample y uniformly from $\left[y^{-1}(a), y^{-1}(b)\right]$
- Obtain x by inverting $y(x) = \int^x g(t) dt$ \bullet

• Integrate
$$
\frac{f(x)}{g(x)}
$$

Example

$$
I_{\text{exact}} = \int_0^1 e^x dx = e - 1
$$

Assume,
$$
g(x) = 1 + x
$$
, $I = \int_0^1 \frac{e^x}{1 + x} (1 + x) dx = \int_0^{\frac{3}{2}} \frac{e^{\sqrt{1 + 2y} - 1}}{\sqrt{1 + 2y}} dy$
\nHere, $y = \int_0^x (1 + t) dt = x + \frac{x^2}{2} \rightarrow x = \sqrt{1 + 2y} - 1$

Use direct sampling and importance sampling to compute the integral for a given number \bullet (say, 5000) of samples

Monte Carlo Simulation and [N](#page-0-0)[SF](#page-19-0) Summer School 2019 and June 4, 2019 5/19

 $Q \curvearrowright$

Importance sampling

General algorithm

$$
I = E_p\{f(x)\} = \int f(x)p(x) dx = \int f(x) \left[\frac{p(x)}{g(x)}\right] g(x) dx = \int f(x) \omega(x) g(x) dx
$$

 $\textbf{1}$ Draw $x_1, x_2, x_3, \cdots, x_j$ from a trial density $\textsf{g}(.)$

2 Compute the importance factor

$$
\omega_j = \frac{p(x_j)}{g(x_j)}
$$

3 Approximate *I* by,

$$
\hat{I} = \frac{\omega_1 f(x_1) + \omega_2 f(x_2) + \cdots + \omega_j f(x_j)}{\omega_1 + \omega_2 + \cdots + \omega_j} \n= \frac{1}{W} \sum_{m=1}^j \omega_m f(x_m)
$$
\n(1)

4 In Eq. (1), ω is needed up to a multiplicative factor. Also, this gives generally a small mean-squared error. The is is related with Markov Chain Monte Carlo algorithms.

 Ω

◀ □ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ │ 듣

Random numbers

Random Numbers

- Monte Carlo methods heavily rely on random numbers (RNs)
- Earlier RNs were produced manually disc rolling, coin flipping, roulette spinning, etc. \bullet
- Physical processes, such as noises in PC, radioactivity, and universal background radiation \bullet can be used to generate RNs.
- Modern RNs are computer generated they pass most of the statistical tests. \bullet
- Linear congruential generators are most common for generating pseudorandom sequences. \bullet
- We assume that a good uniform RNG, from 0 to 1, is available. \bullet

Random variates from a given probability density

How to generate different probability density?

- In MC simulations, one frequenty employs different probability densities: Uniform, Normal, Gamma, Exponential, etc.
- Generating some densities in higher dimension (≥ 4) can be nontrivial.
- Different methods exist for this purpose.
- **Inverse-Transform and Acceptance-Rejection methods are two prominent** examples.
- **•** Generation of random vectors on the surface of unit hypersphere is often needed in MC simulations.

- K ① ▶ K 호 ▶ K 호 ▶ │ 호

Inverse-transform method

Key idea

Let X be a random variable with cumulative distribution function (CDF) F , of a probability density $f(x)$, and that it is invertible,

$$
F^{-1}(u) = \inf\{x : F(x) \ge u\}, 0 \le u \le 1
$$

It follows that, if $U \sim U(0,1)$, then,

$$
X=F^{-1}(U)
$$

Example 1

Generate the exponential distribution with a density,

$$
f(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0
$$

Solution: The CDF is given by,

$$
F(a) = \int_0^a f(x) dx = \int_0^a \lambda e^{-\lambda x} dx = 1 - e^{-\lambda a}
$$

$$
1 - e^{-\lambda x} = u \quad \to \quad x = -\frac{\log(1 - u)}{\lambda} \quad \to \quad X = -\frac{\log(1 - U)}{\lambda} \sim -\frac{\log U}{\lambda}
$$

Monte Carlo Simulation and [N](#page-0-0)[SF](#page-19-0) Summer School 2019 and June 4, 2019 9/19

◀ ㅁ ▶ ◀ @ ▶ ◀ 듣 ▶ ◀ 듣 ▶ │ 듣 │ ◆ 9 Q (^

Inverse-transform method

Example 2: Rayleigh distribution

The Rayleigh distribution with parameter $\sigma > 0$ has the density,

$$
f(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} \quad \text{for} \quad x \ge 0
$$

Here,
$$
F(a) = \int_0^a \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right) = 1 - \exp\left(-\frac{a^2}{2\sigma^2}\right)
$$

Solving $u = F(x) = 1 - e^{-\frac{x^2}{2\sigma^2}} \rightarrow x = \sqrt{-2\sigma^2 \log(1 - u)} = \sqrt{-2\sigma^2 \log(u')}$

Acceptance-Rejection Method

Example 1: Computation of π

$$
\frac{N_r}{N_r + N_b} = \frac{\text{Area of the semicircle}}{\text{Area of the rectangle}} = \frac{\pi/2 \times r^2}{1 \times 2} = \frac{\pi}{4}
$$

∴ $\pi = 4 \cdot \frac{N_r}{N_r + N_b} = 4 \times r$, $r = \text{acceptance ratio}$
 $N_r(N_b) = \text{Number of red (blue) balls}$

Key idea and the algorithm

Let $g(x)$ be a proposal density, such that $\phi(x) = Cg(x)$, where $C = \sup\{f(x) : x \to [a, b]\}$ and $\phi(x) \ge f(x)$. Then the A-R algorithm reads:

6 Generate X from
$$
g(x)
$$
, and U from U(0,1)
Obtain a minimal C such that $G(x) > f(x)$

2 Obtain a minimal C, such that
$$
Cg(x) \ge f(x)
$$

3 If $U \leq \frac{f(X)}{f(x)}$ $\frac{f(\Delta)}{Cg(X)}$, accept X. Otherwise retrn to step 1

Problem

Generate a random variable X from the semicircular distribution,

$$
f(x) = A(R)\sqrt{R^2 - x^2} = \frac{2}{\pi R^2}\sqrt{R^2 - x^2}
$$

Random vector generation

- To sample random variates x in high dimensions (or a Markov \bullet chain z_t in the state space).
- Conventional methods for 2 and 3 dimensions do not work in d \bullet dimensions.
- **•** Prodecures for generating RVs inside a hypersphere are different than on a hypersurface

Two important relations

• Volume of a sphere in d dimensions:

$$
V_d(R) = \int_{\sum_i x_i^2 \le R^2} dx_1 dx_2 \dots dx_d = \left[\frac{\pi^{d/2}}{\Gamma(\frac{d}{2} + 1)} \right] = A_d R^d
$$

Here,
$$
\Gamma(n+1) = n \Gamma(n) = n!
$$
, $\Gamma(1/2) = \sqrt{\pi}$, and $A_{(3,2)} = (\frac{4\pi}{3}, \pi)$

Acceptance ratio r in high dimensions: \bullet

$$
r = \frac{\text{Vol. of a } d\text{-dimensional unit sphere}}{\text{Vol. of a } d\text{-dimensional cube of length 2}} = \frac{1}{d \cdot 2^{d-1}} \frac{\pi^{d/2}}{\Gamma(d/2)} \to 0, \text{ for } d \ge 10
$$

Random vector generation

Algorithm: Random vectors inside the hypersphere

- Generate a random vector $\mathbf{X} = (X_1, X_2, \ldots, X_d)$ from a normal distribution, $\mathcal{N}(0,1)$.
- Compute $\sigma = U^{1/d}$, where $U \sim \mathcal{U}(0,1)$.
- Return $\mathbf{R} = \frac{\sigma \mathbf{X}}{||\mathbf{X}||}$

Rubenstein 2007

Algorithm: Random vectors on the hypersphere

Compute $\sigma = \frac{1}{\sqrt{2}}$ d

> Generate a random vector $\mathbf{X} = (X_1, X_2, \ldots, X_d)$ from a normal distribution, $\mathcal{N}(0,\sigma)$.

• Return
$$
R = \frac{x}{||X||}
$$
 Krauth 2006

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │ ◆ 9 Q ①

From importance sampling to function optimization

Intuitive ideas

 \bullet Define the average of $f(\mathbf{x})$

$$
\langle f(\mathbf{x}) \rangle = \int f(\mathbf{x}) \, \rho(\mathbf{x}, \beta) \, d\mathbf{x} \qquad \qquad \beta = \text{a suitable parameter}, \beta \ge 0
$$

and use the normalizd density $\rho(\mathbf{x}, \beta)$

$$
\rho(\mathbf{x}, \beta) = \frac{e^{-\beta H(\mathbf{x})}}{\int e^{-\beta H(\mathbf{x})} d\mathbf{x}} = \frac{e^{-\beta H(\mathbf{x})}}{Z}, \text{ where } Z = \text{Partition function}
$$

- \bullet $\rho(\mathbf{x}, \beta)$ can be constructed, in general, up to a multiplicative constant (no Z information)
- Large values of $\rho(\mathbf{x}, \beta)$ are of interest here; correspond to low values of $H(\mathbf{x})$
- Good samples of $\rho(x)$ originate from the region of x that likely to minimize $H(x)$.
- These considerations lead to the Metropolis and related algorithms.
- Equilibrium statistical mechanics provides a theoretical framework and the sampling density $\rho(\mathbf{x}, \beta)$.

E

Metropolis Monte Carlo

Markov chains

Figure: Generation of a Markov

chain in state-vector space

Metropolis Algorithm

- $\textbf{1}$ Start from the current state x^t and generate x^1 with a symmetric transition rule, $\mathcal{T}(x^t,x^1)=\,\mathcal{T}(x^1,x^{\overline{t}})$ and $\Delta H=H(x^1)-H(x^{\overline{t}})$
- Generate a random number $U \sim U[0,1]$
- $\textbf{3}$ Accept $\chi^{t+1}=\chi^1$, if $r<\rho(\chi^1)/\rho(\chi^t)=\exp(-\Delta H)$ and let $\chi^{t+1}=\chi^t$ otherwise
- **4** For symmetric $T(x, y)$, both algorithms are identical

Metropolis-Hastings Algorithm

- \bigcap $\mathcal{T}(x, y) \neq \mathcal{T}(y, x)$ but $\mathcal{T}(x, y) > 0$ if $\mathcal{T}(y, x) > 0$
	- Generate a random number $U \sim U[0,1]$ and form

$$
r(x, y) = \min\left[1, \frac{\rho(y)T(y, x)}{\rho(x)T(x, y)}\right]
$$

 $\mathbf{\overline{3}}$ Accept $X^{t+1}=X^{1}$, if $U< r(\text{x}, \text{y})$ and let $X^{t+1}=X^{t}$ otherwise

つへへ

Markov Chain Monte Carlo (MCMC)

Comments

- Metropolis works fine for our purpose
- \bullet How to choose a Markov transition rule $T(x, y)$?
- The rule must leave the target distribution, $\rho(\mathbf{x})$, invariant
- \bullet Often Ts are chosen for convenience
- More general approachs are needed Gibbs sampling, partial resampling

Research stuffs

- **Gibbs sampling** (Geman and Geman 1984)
- Partial resampling techniques (Goodman and Sokal 1989)
- Generalized conditional sampling (Liu and Sabati 2000)
- Hybrid Monte Carlo

 Ω

Figure: Simulated annealing

Simulated annealing

- Evolution toward thermodynamic equilibrium (i.e., approaching target 'Boltzmann' density)
- Target density is determined by equilibrium statistical mechanics
- Global minimum is reachable in principle but infeasible in practice (unrealistic logarithmic cooling)
- Plagued by local minima \bullet
- Complexity and dimension of the objective-function O space ("rugged landscape")
- No gradient information needed (Atta-Fynn talk) \bullet
- \bullet Smart cooling protolcol can help $T_{n+1} = f(T_n, \beta)$

List of programs for Tutorial session

- **1** P1: Generation of random variates: Exp, Rayleigh, Cauchy, semicircular
- P2: Random vectors *within* a hypersphere in n dimension
- 3 P3: Random vectors *on* the surface of a hypersphere
- 4 P4: Function minimization via Metropolis Monte Carlo
- **5** P5: Random number genration inside a three-dimensional cube
- **6** P6: Simple nearest-neigbor list generation
- P7: Two-body or pair-correlation function
- 8 P8: Reduced three-body or bond-angle distribution

 Ω

◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로

"Come, my friend. 'T is not too late to seek a newer world" Lord Tennyson

Let us explore the beautiful world of disordered materials

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → ⊙ Q ⊙