
Monte Carlo Methods: An Introduction

Parthapratim Biswas

Physics and Astronomy

The University of Southern Mississippi

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 1 / 19

OUTLINE

Monte Carlo integration

Direct and importance sampling

Random numbers and probability distributions

Function optimization in high-dimensional spaces

Metropolis and related algorithms

Monte Carlo simulation of (disordered) solids

Monte Carlo, Casino, and random numbers are all related!

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 2 / 19

OUTLINE

Monte Carlo integration

Direct and importance sampling

Random numbers and probability distributions

Function optimization in high-dimensional spaces

Metropolis and related algorithms

Monte Carlo simulation of (disordered) solids

Monte Carlo, Casino, and random numbers are all related!

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 2 / 19

Monte Carlo integration

x
a b

f(x)

∫ b

a
f (x) dx = (b − a) 〈f 〉

Estimator of average 〈f 〉:

〈f 〉N =
1

N

N∑
i=1

f (xi) (sampled at N points)

∫ b

a
f (x) dx ≈

b − a

N

N∑
i=1

f (xi)

Key problem: How to choose of xi from [a, b]?

Observarions
In one- and two-dimensional spaces, efficent numerical schemes exist.

Think of Newton-Cotes (Traphezoidal and Simpson rules) and Gaussian quadrature

Curse of high dimensions (except for mean-field theorists!)

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 3 / 19

Direct vs. Indirect sampling

-6
-4

-2
 0

 2
 4

 6
-6

-4

-2

 0

 2

 4

 6-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

〈f 〉 ≈
1

NM

N∑
i=1

M∑
j=1

f (xi , yj)

Only two regions contribute to the integral above

Direct sampling is inefficient (random or uniform grid) in higher dimensions

Prior knowledge of the region(s) of importance can help significantly

Key idea

Instead of direct sampling, find a target density that largely defines over the region(s) of
importance

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 4 / 19

Importance sampling

Elementary concepts

I =

∫ b

a
f (x) dx =

∫ b

a

f (x)

g(x)
g(x) dx =

∫ y -1(b)

y -1(a)

f (x)

g(x)
dy , where y(x) =

∫ x

g(t) dt

Choose a suitable g(x) close to f (x)
Sample y uniformly from [y -1(a), y -1(b)]
Obtain x by inverting y(x) =

∫ x g(t) dt

Integrate f (x)
g(x)

Example

Iexact =

∫ 1

0
ex dx = e − 1

Assume, g(x) = 1 + x , I =

∫ 1

0

ex

1 + x
(1 + x) dx =

∫ 3
2

0

e
√

1+2y−1

√
1 + 2y

dy

Here, y =

∫ x

(1 + t) dt = x +
x2

2
→ x =

√
1 + 2y − 1

Use direct sampling and importance sampling to compute the integral for a given number
(say, 5000) of samples

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 5 / 19

Importance sampling

General algorithm

I = Ep{f (x)} =

∫
f (x)p(x) dx =

∫
f (x)

[
p(x)

g(x)

]
g(x) dx =

∫
f (x)ω(x) g(x) dx

1 Draw x1, x2, x3, · · · , xj from a trial density g(.)

2 Compute the importance factor

ωj =
p(xj

g(xj)

3 Approximate I by,

Î =
ω1f (x1) + ω2f (x2) + · · ·+ ωj f (xj)

ω1 + ω2 + · · ·+ ωj

=
1

W

j∑
m=1

ωmf (xm) (1)

4 In Eq. (1), ω is needed up to a multiplicative factor. Also, this gives generally a small
mean-squared error. The is is related with Markov Chain Monte Carlo algorithms.

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 6 / 19

Random numbers

Random Numbers

Monte Carlo methods heavily rely on random numbers (RNs)

Earlier RNs were produced manually – disc rolling, coin flipping, roulette spinning, etc.

Physical processes, such as noises in PC, radioactivity, and universal background radiation
can be used to generate RNs.

Modern RNs are computer generated – they pass most of the statistical tests.

Linear congruential generators are most common for generating pseudorandom sequences.

We assume that a good uniform RNG, from 0 to 1, is available.

x

p(x)

0

1

1

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 7 / 19

Random variates from a given probability density

How to generate different probability density?

In MC simulations, one frequenty employs different probability densities:
Uniform, Normal, Gamma, Exponential, etc.

Generating some densities in higher dimension (≥ 4) can be nontrivial.

Different methods exist for this purpose.

Inverse-Transform and Acceptance-Rejection methods are two prominent
examples.

Generation of random vectors on the surface of unit hypersphere is often
needed in MC simulations.

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 8 / 19

Inverse-transform method

Key idea

Let X be a random variable with cumulative distribution function (CDF) F , of a probability
density f (x), and that it is invertible,

F -1(u) = inf{x : F (x) ≥ u}, 0 ≤ u ≤ 1

It follows that, if U ∼ U(0,1), then,
X = F -1(U)

Example 1

Generate the exponential distribution with a density,

f (x) = λe−λx for x ≥ 0

Solution: The CDF is given by,

F (a) =

∫ a

0
f (x) dx =

∫ a

0
λe−λx dx = 1− e−λa

1− e−λx = u → x = −
log(1− u)

λ
→ X = −

log(1− U)

λ
∼ −

log U

λ

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 9 / 19

Inverse-transform method

Example 2: Rayleigh distribution

The Rayleigh distribution with parameter σ > 0 has the density,

f (x) =
x

σ2
e
− x2

2σ2 for x ≥ 0

Here, F (a) =

∫ a

0

x

σ2
exp

(
−

x2

2σ2

)
= 1− exp

(
−

a2

2σ2

)

Solving u = F (x) = 1− e
− x2

2σ2 → x =
√
−2σ2 log(1− u) =

√
−2σ2 log(u′)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

f(
X

)

X

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 10 / 19

Acceptance-Rejection Method

Example 1: Computation of π

0 2

1

Nr

Nr + Nb
=

Area of the semicircle

Area of the rectangle
=
π/2× r2

1× 2
=
π

4

∴ π = 4.
Nr

Nr + Nb
= 4× r , r = acceptance ratio

Nr (Nb) = Number of red (blue) balls

Key idea and the algorithm

Let g(x) be a proposal density, such that φ(x) = Cg(x), where C = sup{f (x) : x → [a, b]} and
φ(x) ≥ f (x). Then the A-R algorithm reads:

1 Generate X from g(x), and U from U(0,1)
2 Obtain a minimal C , such that Cg(x) ≥ f (x)

3 If U ≤ f (X)
Cg(X)

, accept X. Otherwise retrn to step 1

Problem

Generate a random variable X from the semicircular distribution,

f (x) = A(R)
√

R2 − x2 =
2

πR2

√
R2 − x2

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 11 / 19

Random vector generation

To sample random variates x in high dimensions (or a Markov
chain zt in the state space).

Conventional methods for 2 and 3 dimensions do not work in d
dimensions.

Prodecures for generating RVs inside a hypersphere are
different than on a hypersurface

Two important relations

Volume of a sphere in d dimensions:

Vd (R) =

∫
∑

i x
2
i ≤R2

dx1 dx2 . . . dxd =

[
πd/2

Γ(d
2

+ 1)

]
= AdR

d

Here, Γ(n + 1) = n Γ(n) = n!, Γ(1/2) =
√
π, and A(3,2) = (

4π

3
, π)

Acceptance ratio r in high dimensions:

r =
Vol. of a d-dimensional unit sphere

Vol. of a d-dimensional cube of length 2
=

1

d 2d−1

πd/2

Γ(d/2)
→ 0, for d ≥ 10

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 12 / 19

Random vector generation

Algorithm: Random vectors inside the hypersphere

Generate a random vector X = (X1,X2, . . . ,Xd) from a normal distribution,
N (0,1).

Compute σ = U1/d , where U ∼ U(0,1).

Return R = σ X
||X|| Rubenstein 2007

Algorithm: Random vectors on the hypersphere

Compute σ = 1√
d

Generate a random vector X = (X1,X2, . . . ,Xd) from a normal distribution,
N (0,σ).

Return R = X
||X|| Krauth 2006

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 13 / 19

From importance sampling to function optimization

Intuitive ideas

Define the average of f (x)

〈f (x)〉 =

∫
f (x) ρ(x, β) dx β = a suitable parameter, β ≥ 0

and use the normalizd density ρ(x, β)

ρ(x, β) =
e−βH(x)∫
e−βH(x) dx

=
e−βH(x)

Z
, where Z = Partition function

ρ(x, β) can be constructed, in general, up to a multiplicative constant (no Z information)

Large values of ρ(x, β) are of interest here; correspond to low values of H(x)

Good samples of ρ(x) originate from the region of x that likely to minimize H(x).

These considerations lead to the Metropolis and related algorithms.

Equilibrium statistical mechanics provides a theoretical framework and the sampling
density ρ(x, β).

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 14 / 19

Metropolis Monte Carlo

Markov chains

X’Xt

Figure: Generation of a Markov

chain in state-vector space

Metropolis Algorithm

1 Start from the current state xt and generate x1 with a symmetric
transition rule, T (xt , x1) = T (x1, xt) and ∆H = H(x1)− H(xt)

2 Generate a random number U ∼ U [0,1]

3 Accept xt+1 = x1, if r < ρ(x1)/ρ(xt) = exp(−∆H) and let xt+1 = xt

otherwise

4 For symmetric T (x, y), both algorithms are identical

Metropolis-Hastings Algorithm
1 T (x, y) 6= T (y, x) but T (x, y) > 0 if T (y, x) > 0

2 Generate a random number U ∼ U [0,1] and form

r(x, y) = min

[
1,
ρ(y)T (y, x)

ρ(x)T (x, y)

]

3 Accept X t+1 = X 1, if U < r(x, y) and let X t+1 = X t otherwise

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 15 / 19

Markov Chain Monte Carlo (MCMC)

Comments

Metropolis works fine for our purpose

How to choose a Markov transition rule T (x, y)?

The rule must leave the target distribution, ρ(x), invariant

Often T s are chosen for convenience

More general approachs are needed – Gibbs sampling, partial resampling

Research stuffs

Gibbs sampling (Geman and Geman 1984)

Partial resampling techniques (Goodman and Sokal 1989)

Generalized conditional sampling (Liu and Sabati 2000)

Hybrid Monte Carlo

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 16 / 19

Hunting the global minimum in a rugged landscape: Simulated annealing

High temperature

Config. coordinate

Config. coordinate

Low temperature

Figure: Simulated annealing

Simulated annealing

Evolution toward thermodynamic equilibrium (i.e.,
approaching target ‘Boltzmann’ density)

Target density is determined by equilibrium
statistical mechanics

Global minimum is reachable in principle but
infeasible in practice (unrealistic logarithmic
cooling)

Plagued by local minima

Complexity and dimension of the objective-function
space (“rugged landscape”)

No gradient information needed (Atta-Fynn talk)

Smart cooling protolcol can help
Tn+1 = f (Tn, β)

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 17 / 19

List of programs for Tutorial session

1 P1: Generation of random variates: Exp, Rayleigh, Cauchy, semicircular

2 P2: Random vectors *within* a hypersphere in n dimension

3 P3: Random vectors *on* the surface of a hypersphere

4 P4: Function minimization via Metropolis Monte Carlo

5 P5: Random number genration inside a three-dimensional cube

6 P6: Simple nearest-neigbor list generation

7 P7: Two-body or pair-correlation function

8 P8: Reduced three-body or bond-angle distribution

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 18 / 19

“Come, my friend. ‘T is not too late to seek a newer world” Lord Tennyson

Let us explore the beautiful world of disordered materials

Monte Carlo Simulation NSF Summer School 2019 June 4, 2019 19 / 19

