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PLAN OF LECTURE

Disorder and Order, introduction
Electronic structure of amorphous materials

Note: This is just a quick overview.There are
several books. An old (1984) but excellent book

is by Elliott, free for download on researchgate.
You can also have my lecture notes (email me!)

| am NOT teaching all the lore, only giving the
general outlook.




INTERLUDE: SCHRODINGER ON
“APERIODIC CRYSTALS”

The non-physicist cannot be expected even to grasp—let
alone to appreciate the relevance of—the difference in
‘statistical structure’ stated in terms so abstract as I have
just used. To give the statement life and colour, let me
anticipate, what will be explained in much more detail later,
namely, that the most essential part of a living cell—the
chromosome fibre—may suitably be called an aperiodic crystal.
In physics we have dealt hitherto only with periodic crystals.
To a humble physicist’s mind, these are very interesting and
complicated objects; they constitute one of the most fasci-
nating and complex material structures by which inanimate
nature puzzles his wits. Yet, compared with the aperiodic
crystal, they are rather plain and dull. The difference in
| structmisofthesamekindummﬂm
' wallpaper in which the same pattern is repeated again and

again in regular periodicity and a masterpiece of embroidery,
o5 Fuplindl 1y ~ which shows no dull repetition bat

-

E.S.“What is
Life” (lectures in Dublin

from 1942). p. 3 of the
1962 CUP reprint



MOTIVATION

To understand disordered matter via
computer models.

To design materials with sought after
properties.

Fact: neither experimentalists nor theorists
succeed by themselves in our field — it’s all
about working together.




DISORDER: SCOPE OF THE

PROBLEM




THE CHALLENGE

All solids are fundamentally quantum mechanical entities: we
know that lattice vibrations have to be quantized, accurate
forces come only from quantum mechanics, can only
understand metals and insulators with quantum mechanical
electrons, etc.

The structure of amorphous solids is unknown and always will
be in a literal sense: no experiment can tell us 1022
coordinates and no computer can store them.

So we will need a way to make representative atomic

models and deal with quantum mechanics in such an extended,
disordered system.




WHAT WE KNOW: CLUSTERS

We can work out the properties of molecules pretty well
with standard methods.

Number of energy minima grows exponentially with
number of atoms (Stillinger). Finding the “ground state”

becomes difficult before even 20 atoms. A harbinger of
challenges ahead...

No k-space, no bands etc, just molecular orbitals.

Not usually a good way to represent a solid — surface
artifacts.




WHAT WE KNOW: CRYSTAL

Crystal: a configuration of atoms arrayed in periodic
fashion.

Can come with one atom per unit cell (Bravais lattice FCC,
BCC, SC etc), or there may be a basis (a collection of
translations) associated with each point in a Bravais lattice
(for example, diamond). Or 10¢ atoms — proteins. Most
recent Nobel prize: 2009.




DIAMOND




WHY CRYSTALS ARE EASY:
SYMMETRY AND ITS USE

The basic point is: we know where the atoms are, and their
periodicity has important consequences.

For calculations, the periodicity makes a critical difference.
Since the electronic or vibrational Hamiltonian commutes
with the translation operator, we get Bloch’s theorem:

o k- '
u"’-nk(, l') =€ r?-I-'-n'l-c(, l') .

u has full periodicity of the lattice, (nk) labels the electronic states



CRYSTALS ARE EASY

Bloch’s theorem lets us work with two indexes: n, the band
index and k, the Bloch wave-vector. For a macroscopic
system, k continuous, all information is included first
Brillouin zone.

In calculations, we can solve

H(k) y(n,k)=E(n,k) y(n,k)

We solve this independently for each k.We diagonalize a
matrix of dimension N, Where N, is of order the
number of valence electrons per site, not of order the
number of atoms!




CRYSTALS ARE EASY: I

Diffraction experiments for xtals give sharp peaks. From
these it is possible to uniquely infer the structure
(essentially, invert the experiment). The Bragg problem.

Disorder gives smooth functions with a few. peaks Vastly
less information in the diffraction experiment. Impossible
to “invert” the experiment without additional information.

Very similar statements are true for lattice vibrations.




OUR PROBLEM: DEALING WITH
THIS!




DISORDER IS CHALLENGING

It’s difficult to even work out “representative” coordinates.

Even with the coordinates, “post processing” (like studying
electronic structure) scales much worse with N (depending
on the method)

We would like to get ground state properties, transport,
and some information about excitations (as for optics).

We lose Bloch’s theorem.




ROLE OF EXPERIMENT:
STRUCTURE

For amorphous materials we have a variety of probes:

Scattering: X-rays, neutrons etc (averaged, so extremely
incomplete) “sum rule”

Electronic and optical (indirect, and averaged)
NMR, etc (indirect and averaged)

STM (even if it can be done as a surface probe)




EXPERIMENT MUST BE
COMPLEMENTED BY MODELING TO
GAIN UNDERSTANDING

Hope is that adding what we know from experiment to
theory will yield a “complete” picture.

To make any progress at all on electrons, phonons, optics
or transport we must have a structural model

Therefore the overarching problem of this field is
structure determination.




STATE OF THE FIELD

New experiments: Ever more brilliant X-ray sources, a
number of facilities for elastic and inelastic neutron
scattering. STM is advancing.

New theory:A revolution in the last 20 years — realistic
atomistic models of disordered systems. Ever-improving
quantum mechanical simulation codes and Machine

Learning.

New applications: photovoltaics (a-Si:H), batteries (solid
electrolytes), computer memory devices (DVD, CD, solid
state FLASH — phase change and conducting bridge). TFTs,
fiber optics, night vision.........




BASIC SCIENCE: SOME OPEN
QUESTIONS

Structural estimation/prediction/inference
Engineering the properties we want (MGl)
Metallic glasses and quasicrystals (Nobel: Schectman; ribbon quench)

The nature of electron states and transport in disordered materials
(Nobel: Anderson and Mott). Localization has taken on a life of its own
(Ball Lightning!!)

Weird low-T specific heat, “tunneling modes”.The key to LIGO!

Computer memory devices made with solid amorphous electrolytes

Many others....




ELECTRONS IN DISORDERED

MATERIALS

L4
©




ROADMAP

l. A simple picture of the Anderson
transition.

Il.  Non-locality of quantum mechanics in
the solid state -- with disorder.

lll. The coupling to phonons.

Implement this for real materials using
credible models.




Q. How does disorder in atomic coordinates affect the
electron states?

Crystalline Si (diamond) Amorphous Silicon
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Short-range order, no L.R.O.
Bloch states k nota “good” quantum number



DISORDER + WAVES =
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate

frequency to yield “Bragg reflection”, note that pattern is extended
in space. Right: disordered obstacles, standing waves — localization!

If its true for water, why not electrons too?!
Lindelof et al. 1996



Models of disorder

E; are random, “diagonal”

Anderson Model (1958) disorder. Fact -- enough
H=|I><I| E; + 2y [[><J| Sy variation in E, -- all states
localized!

Topological (bond length/angle) disorder S,;: Computed from
H=>,|P<I|E +>,|[><J| S, realistic model.

Anderson model: disorder uncorrelated site-to-site; our case —
spatial correlations induce correlations in matrix elements.



ANDERSON MODEL
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Left: A localized eigenstate in 1D (Kramer/MacKinnon)
Right: 3D critical eigenstate (15.6M sites; Roemer)



|. APPROACH FOR A REAL
MATERIAL

* Compute electronic states around the gap for big and
realistic models of a-Si', and study the nature of the

localized (midgap) to extended (in the band) transition.
[4096 atoms model, periodic BC]

* Employ unholy amalgam of tight-binding, maximum entropy,
shift and invert Lanczos techniques.

'B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)
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INTERPRETATION

Structural irregularities or defects “beyond the mean”
exist.

If “bad enough” these induce localized wave functions.

If two such defects are spatially near and have similar

energies, system eigenstates will be mixtures. “States b
and ¢~ [clue: Symmetric and anti-symmetric linear
combinations of b and c yield single “islands” ]

If many such resonant defects overlap, one has
“electronic connectivity” .This is Mott's mobility edge.

“Resonant Cluster Proliferation” Model




UNIVERSALITY OF ISLAND
PROLIFERATION

Vitreous silica vibrations

Anderson model, note white centers

W/V=16.5 (all states
localized).

Vibrational evecs
for 10K atom model
of a-Si.

FCC lattice with force
constants selected
from uniform dist of width
(W/V=2)

—




“UNIVERSALITY” AND
STRUCTURE OF EIGENSTATES

* Disorder comes in many shapes and sizes.

* electrons,Anderson models (diagonal and off-
diagonal); “real” disorder from topologically
disordered network.

e vibrations “Substitutional” ; Force constant
disorder on a FCC lattice; Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si) 10,000 atom

The qualitative nature of the localized-extended transition is similar for
all these systems.

Ludlam, Taraskin, Elliott, DAD — JPCM 17 L321 (2005).



1. LOCALITY OF QM IN
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like
the force on atom at R requires information from everywhere!

bes{ = 2 Z (Yn| — VRH |thy)

N occ

[Here, vy, is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at
R??? (No! Boys, Kohn, Vanderbilt, Daw...)
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DENSITY MATRIX: GAUGE OF
ELECTRONIC NONLOCALITY

eigenstates

/
p(x,x")=2 D, ¢*(x)i,(x")

n oOCC

W. Kohn: Density matrix p is localized by destructive wave-mechanical
interference. Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference
should be influenced by structural disorder. Is 1t?

The decay of the density matrix is fundamental attribute of the material
(and structure).



p(xx) (1/A%)

EXAMPLE: ALUMINUM

N, ' ' ! p(x’x1)=2(27_’_)—3f d3ke—ik-(x—x')
k<k[.‘
T ' — =3n[sin({) — ¢ cos()1/ L3,
C=hffx-x |
n: density of electron gas
0.05 |
-0.05

0.0 25 5.0 75 10.0
x/-x(A) /

N Kohn-Sham

FIG. 4. Contour plot of the real-space density matrix for Al
calculated in the {100} plane for the conventional cubic unit cell
(the x-y axes are parallel to the bonds).

S. N. Taraskin et al., PRB 66 233101 (2002)

Metal: power law decay. Free electron gas gives similar DM
to DFT! Gibbs 'ringing™ from cutoff at Fermi surface.

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198-201,
Trinity College, when 22 years old, 50 years before Gibbs!



DECAY OF DENSITY MATRIX IN
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per

Zsﬂlzu)(zp,l + Z tuwlip) ('l site, bonding and
P, jli)p antibonding, SC
lattice.

Density matrix 1s integral over Brillouin zone:

1kr S
plryj) = 2(277)D .[ f o (Ak + S)l/2

S(k) is structure factor,A(k) depends on S and tight
binding parameters.



D.M.ASYMPTOTICS (CONT’D)

(—127 ~ [ (2k)!

2
(4A)k(k’)!j| k" + 1)2p

S is a (known) sum, depending on dimensionality D=1,2,3
Sum the series, use Stirling approximation, in 3D get (for
example):

Pre = (_1)7\/ 27T vy vy CXP[_ y+<1 " 2T_+ln(v"/Vy)>]

< 5 | sl :
|2 Pl ) ™

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).
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REALISTIC CALCULATIONS (C-SI
AND A-SI): DFT

10

r(A) r(A)
The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

* Wannier functions: unitary transformations of
eigenstates localized in real space.

* Not unique, but Vanderbilt showed how to

compute maximally-localized Wannier

functions'.

* Long range decay of these is similar for c-Si and
a-Si, and similar to decay of density matrix.

* We compute with an O(N) projection method,
results much like MLVVFs.

ID. Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



Diamond

WANNIER FUNCTIONS FOR
DISORDERED SYSTEMS

DAD Eur. Phys. ] B 68 1 (2009)
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CONCLUSION: LOCALITY

We quantify Kohn’s Principle:
Analytically for two-band insulator

By direct calculation of p with Kohn-Sham orbitals for
metals, crystalline and amorphous semiconductors. Also
Wannier functions from projection.

Topological disorder makes little qualitative difference,
at least for a-Si (and SiO,).
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V. BUT WHAT OF LOCALIZED
ELECTRONS + PHONONS

* The electron-phonon coupling gauges
how the electron energies/states change
with atomic deformation.

* Phonon effects near the Fermi level: key
to transport, device applications, theory
of localization.

* We begin with a simple simulation....




Energy eigenvalue (eV)

THERMAL FLUCTUATIONS OF
THE KOHN-SHAM EIGENVALUES

Amorphous Si 216 Crystal Si 216

Al " . ' A ' Al ' Al ' . l . l . l
0 500 1000 1500 2000 O 500 1000 1500 2000
Time (fs) Time (fs)

States near gap fluctuate by tenths of eV’ >> kT'!

T=300K, 216

atoms, | point



SENSITIVITY OF ELECTRON ENERGY
TO PARTICULAR PHONON

Hellmann-Feynman theorem and harmonic approximation
with classical lattice dynamics leads easily to fluctuations in

electron energy eigenvalue <6A>>:

) T r N p—)
A2y e -I- c\ 2 31\8 J- ‘:’;1(“’,)
3N -
- ~, OH
Zn(w) = Z<“.~"I’-n |m|'¢"n> Xolw).

a=1
We call = the electron-phonon coupling



E-P COUPLING: A-SI, A-SE

Si

Se

=n(W) = Xa=W,|OH/OR oW, Xa(W)
Couple electron n (energy E) and phonon W

R. Atta-Fynn, P. Biswas, DAD Electron-phonon
coupling is large for localized states, PRB 69 245204 42
(2004)



CORRELATION BETWEEN
LOCALIZATION AND THERMAL
FLUCTUATION FROM MD
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