
STRUCTURE AND 
ELECTRONIC PROPERTIES OF 

AMORPHOUS MATERIALS

David Drabold

Ohio University

NSF Workshop, Gulfport, MS



PLAN OF LECTURE

• Disorder and Order, introduction
• Electronic structure of amorphous materials

• Note:  This is just a quick overview. There are 
several books.  An old (1984) but excellent book 
is by Elliott, free for download on researchgate. 
You can also have my lecture notes (email me!)

• I am NOT teaching all the lore, only giving the 
general outlook.



INTERLUDE: SCHRODINGER ON 
“APERIODIC CRYSTALS”

E. S. “What is 
Life” (lectures in Dublin
from 1942). p. 3 of the
1962 CUP reprint



MOTIVATION

• To understand disordered matter via 
computer models.
• To design materials with sought after 

properties.
Fact: neither experimentalists nor theorists 
succeed by themselves in our field – it’s all 
about working together.



DISORDER: SCOPE OF THE 
PROBLEM



THE CHALLENGE

• All solids are fundamentally quantum mechanical entities: we 
know that lattice vibrations have to be quantized, accurate 
forces come only from quantum mechanics, can only 
understand metals and insulators with quantum mechanical 
electrons, etc.

• The structure of amorphous solids is unknown and always will 
be in a literal sense: no experiment can tell us 1022  

coordinates and no computer can store them.

• So we will need a way to make representative atomic 
models and deal with quantum mechanics in such an extended, 
disordered system.  



WHAT WE KNOW: CLUSTERS

• We can work out the properties of molecules pretty well 
with standard methods.

• Number of energy minima grows exponentially with 
number of atoms (Stillinger). Finding the “ground state” 
becomes difficult before even 20 atoms. A harbinger of 
challenges ahead…

• No k-space, no bands etc, just molecular orbitals.

• Not usually a good way to represent a solid – surface 
artifacts.



WHAT WE KNOW: CRYSTAL 

• Crystal: a configuration of atoms arrayed in periodic 
fashion.

• Can come with one atom per unit cell (Bravais lattice FCC, 
BCC, SC etc), or there may be a basis (a collection of 
translations) associated with each point in a Bravais lattice 
(for example, diamond). Or 106 atoms – proteins. Most 
recent Nobel prize: 2009.



DIAMOND



WHY CRYSTALS ARE EASY: 
SYMMETRY AND ITS USE

• The basic point is: we know where the atoms are, and their 
periodicity has important consequences.

• For calculations, the periodicity makes a critical difference. 
Since the electronic or vibrational Hamiltonian commutes 
with the translation operator, we get Bloch’s theorem:

u has full periodicity of the lattice, (nk) labels the electronic states



CRYSTALS ARE EASY

• Bloch’s theorem lets us work with two indexes: n, the band 
index and k, the Bloch wave-vector. For a macroscopic 
system, k continuous, all information is included first 
Brillouin zone. 

• In calculations, we can solve

H(k) y(n,k)=E(n,k) y(n,k)

We solve this independently for each k. We diagonalize a 
matrix of dimension Nbasis where Nbasis is of order the 
number of valence electrons per site, not of order the 
number of atoms!



CRYSTALS ARE EASY: II

• Diffraction experiments for xtals give sharp peaks. From 
these it is possible to uniquely infer the structure 
(essentially, invert the experiment).  The Bragg problem.

• Disorder gives smooth functions with a few. peaks  Vastly 
less information in the diffraction experiment. Impossible
to “invert” the experiment without additional information.

• Very similar statements are true for lattice vibrations.



OUR PROBLEM: DEALING WITH 
THIS!



DISORDER IS CHALLENGING

• It’s difficult to even work out “representative” coordinates.

• Even with the coordinates, “post processing” (like studying 
electronic structure) scales much worse with N (depending 
on the method)

• We would like to get ground state properties, transport, 
and some information about excitations (as for optics).

• We lose Bloch’s theorem.



ROLE OF EXPERIMENT: 
STRUCTURE

• For amorphous materials we have a variety of probes: 

Scattering: X-rays, neutrons etc (averaged, so extremely 
incomplete) “sum rule”

Electronic and optical (indirect, and averaged)

NMR, etc (indirect and averaged)

STM (even if it can be done as a surface probe)



EXPERIMENT MUST BE 
COMPLEMENTED BY MODELING TO 

GAIN UNDERSTANDING

• Hope is that adding what we know from experiment to 
theory will yield a “complete” picture.

• To make any progress at all on electrons, phonons, optics 
or transport we must have a structural model

• Therefore the overarching problem of this field is 
structure determination. 



STATE OF THE FIELD

• New experiments: Ever more brilliant X-ray sources, a 
number of facilities for elastic and inelastic neutron 
scattering. STM is advancing.

• New theory: A revolution in the last 20 years – realistic 
atomistic models of disordered systems.  Ever-improving 
quantum mechanical simulation codes and Machine 
Learning.

• New applications: photovoltaics (a-Si:H), batteries (solid 
electrolytes), computer memory devices (DVD, CD, solid 
state FLASH – phase change and conducting bridge). TFTs, 
fiber optics, night vision………



BASIC SCIENCE: SOME OPEN 
QUESTIONS

• Structural estimation/prediction/inference

• Engineering the properties we want (MGI)

• Metallic glasses and quasicrystals (Nobel: Schectman; ribbon quench)

• The nature of electron states and transport in disordered materials 
(Nobel: Anderson and Mott). Localization has taken on a life of its own 
(Ball Lightning!!)

• Weird low-T specific heat, “tunneling modes”. The key to LIGO!

• Computer memory devices made with solid amorphous electrolytes

• Many others….



ELECTRONS IN DISORDERED 
MATERIALS



ROADMAP

I. A simple picture of the Anderson 
transition.

II. Non-locality of quantum mechanics in 
the solid state -- with disorder.

III. The coupling to phonons.
Implement this for real materials using 

credible models.



Crystalline Si (diamond) Amorphous Silicon

Translational periodicity                   Short-range order, no L.R.O.
Bloch states                                       k not a �good� quantum number

Q. How does disorder in atomic coordinates affect the
electron states?



DISORDER + WAVES = 
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate 
frequency to yield “Bragg reflection”, note that pattern is extended
in space. Right: disordered obstacles, standing waves – localization!

If its true for water, why not electrons too?!
Lindelof et al. 1996



Models of disorder

Anderson Model (1958)
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

EI are random, �diagonal�
disorder. Fact -- enough 
variation in EI -- all states
localized! 

Topological (bond length/angle) disorder
H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

SIJ: Computed from
realistic model. 

Anderson model: disorder uncorrelated site-to-site; our case –
spatial correlations induce correlations in matrix elements. 



ANDERSON MODEL

Left: A localized eigenstate in 1D (Kramer/MacKinnon)
Right: 3D critical eigenstate (15.6M sites; Roemer)



I . APPROACH FOR A REAL 
MATERIAL

• Compute electronic states around the gap for big and 
realistic models of a-Si1, and study the nature of the 
localized (midgap) to extended (in the band) transition. 
[4096 atoms model, periodic BC]

• Employ unholy amalgam of tight-binding, maximum entropy, 
shift and invert Lanczos techniques.

1B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)



Evolution of electron states
in a-Si.  J-J Dong, DAD PRL 80 1928 1998

|Ψ|2



INTERPRETATION 

• Structural irregularities or defects �beyond the mean�
exist.

• If �bad enough� these induce localized wave functions.

• If two such defects are spatially near and have similar 
energies, system eigenstates will be mixtures. �States b 
and c� [clue: Symmetric and anti-symmetric linear 
combinations of b and c yield single �islands�]

• If many such resonant defects overlap, one has 
�electronic connectivity�. This is Mott’s mobility edge.

�Resonant Cluster Proliferation�Model



UNIVERSALITY OF ISLAND 
PROLIFERATION 

Anderson model,
W/V=16.5 (all states
localized). 

Vitreous silica vibrations
note white centers

FCC lattice with force
constants selected
from uniform dist of width
(W/V=2)

Vibrational evecs
for 10K atom model
of a-Si.



�UNIVERSALITY� AND 
STRUCTURE OF EIGENSTATES

• Disorder comes in many shapes and sizes. 
• electrons, Anderson models (diagonal and off-

diagonal);  �real� disorder from topologically 
disordered network.

• vibrations�Substitutional�;  Force constant 
disorder on a FCC lattice;  Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si)10,000 atom

The qualitative nature of the localized-extended transition is similar for 
all these systems.

Ludlam, Taraskin, Elliott, DAD – JPCM 17 L321 (2005).



I I I . LOCALITY OF QM IN 
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like 
the force on atom at R requires information from everywhere!

[Here, yn is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at 
R???  (No! Boys, Kohn, Vanderbilt, Daw...)



DENSITY MATRIX: GAUGE OF 
ELECTRONIC NONLOCALITY

W. Kohn: Density matrix ρ is localized by destructive wave-mechanical 
interference.                  Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference
should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material 
(and structure).

eigenstates



EXAMPLE: ALUMINUM

Metal: power law decay. Free electron gas gives similar DM 
to DFT! Gibbs’ ringing* from cutoff at Fermi surface.

ζ=kf|x-x�| 
n: density of electron gas

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198–201, 
Trinity College, when 22 years old, 50 years before Gibbs!

Kohn-Sham

S. N. Taraskin et al., PRB 66 233101 (2002)



DECAY OF DENSITY MATRIX IN 
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian
Two orbitals per
site, bonding and
antibonding, SC
lattice.

Density matrix is integral over Brillouin zone:

S(k) is structure factor, A(k) depends on S and tight
binding parameters. 



D.M. ASYMPTOTICS (CONT’D)

S is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).



REALISTIC CALCULATIONS (C-SI 
AND A-SI): DFT

The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

• Wannier functions: unitary transformations of 
eigenstates localized in real space.

• Not unique, butVanderbilt showed how to 
compute maximally-localized Wannier
functions1.

• Long range decay of these is similar for c-Si and 
a-Si, and similar to decay of density matrix.

• We compute with an O(N) projection method, 
results much like MLWFs.

1D. Vanderbilt and coworkers �Maximally-localized WF�, N. Marzari et al, RMP 84 1419 (2012)



WANNIER FUNCTIONS FOR 
DISORDERED SYSTEMS

Diamond a-SiDAD Eur. Phys. J B 68 1 (2009)



CONCLUSION: LOCALITY

We quantify Kohn’s Principle:

(1) Analytically for two-band insulator

(2) By direct calculation of r with Kohn-Sham orbitals for 
metals, crystalline and amorphous semiconductors. Also 
Wannier functions from projection.

(3) Topological disorder makes little qualitative difference, 
at least for a-Si (and SiO2).



IV. BUT WHAT OF LOCALIZED
ELECTRONS + PHONONS

• The electron-phonon coupling gauges 
how the electron energies/states change 
with atomic deformation.
• Phonon effects near the Fermi level: key 

to transport, device applications, theory 
of localization.
• We begin with a simple simulation….



THERMAL FLUCTUATIONS OF 
THE KOHN-SHAM EIGENVALUES

States near gap fluctuate by tenths of eV >> kT !

Τ=300Κ, 216
atoms, G point



SENSITIVITY OF ELECTRON ENERGY 
TO PARTICULAR PHONON

• Hellmann-Feynman theorem and harmonic approximation 
with classical lattice dynamics leads easily to fluctuations in 
electron energy eigenvalue <δλ2>:

We call Ξ the electron-phonon coupling



E-P COUPLING: A-SI, A-SE

Si

Se

Ξn(ω) = ∑α<ψn|∂H/∂Rα|ψn> χα(ω)

Couple electron n (energy E) and phonon ω
R. Atta-Fynn, P. Biswas, DAD Electron-phonon 
coupling is large for localized states, PRB 69 245204 
(2004)



CORRELATION BETWEEN 
LOCALIZATION AND THERMAL 

FLUCTUATION FROM MD

Localization (T=0 property)

<δλ2>

Fits analytic result for low T

150K

300K

500K

700K

(T>0 property)


