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=What	is	structural	optimization?

=Optimization	algorithms
=Steepest	descent	algorithm	
=Conjugate	gradient	algorithm	
=Monte	Carlo	method

=Closing	remarks

Outline	
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= An	atomistic	structure is	a	set	atoms	with	well-defined	positions	(or	coordinates).	

= Several	properties	of	an	atomistic	structure	are	best	described when	the	structure	is	in	a	
minimum	energy	state;	this	is	a	major	reason	why	structural	optimization	is	performed	

What	is	structural	optimization?

What	is	structural	optimization?
𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙	𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑡ℎ𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠	𝑜𝑓	𝑢𝑠𝑖𝑛𝑔	𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟	𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠	𝑡𝑜	𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	
𝑡ℎ𝑒	𝑒𝑛𝑒𝑟𝑔𝑦	𝑜𝑓	𝑎𝑛	𝑎𝑡𝑜𝑚𝑖𝑠𝑡𝑖𝑐	𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.	

Specifically, the	atomic	positions	are	displaced	sequentially	 following	a	set	of	rules 	until	
a	minimum	energy	state	is	reached.
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= Goal	of	structural	optimization:	Minimize	the	total	energy	𝐸 of	a	set	of	𝑁 atoms	with	
respect	to	the	atomic	positions	{𝐫S,	𝐫T,….,	𝐫U} ≡ 𝑥S, 𝑦S , 𝑧S , 𝑥T, 𝑦T, 𝑧T , , 𝑥U, 𝑦U, 𝑧U .

= 𝐸 is	a	function	of	{𝐫S,	𝐫T,….,	𝐫U},	that	is:	𝐸 ≡ 𝐸(𝐫S, 𝐫T,… , 𝐫U).	𝐸 depends	on	3𝑁 variables.

= The	condition	for	𝐸 to	be	a	minimum	is:
𝛻𝐸 𝐫S, 𝐫T,… , 𝐫U = 𝟎																	[1]

where	𝛻𝐸 is	a	vector	known	as	the	gradientof 𝐸 given	by:

𝛻𝐸 =
𝜕𝐸
𝜕𝐫S

,
𝜕𝐸
𝜕𝐫T

, … ,
𝜕𝐸
𝜕𝐫U

=
𝜕𝐸
𝜕𝑥S

,
𝜕𝐸
𝜕𝑦S

,
𝜕𝐸
𝜕𝑥S

de
d𝐫f

,
𝜕𝐸
𝜕𝑥T

,
𝜕𝐸
𝜕𝑦T

,
𝜕𝐸
𝜕𝑥T

de
d𝐫g

,… . . ,
𝜕𝐸
𝜕𝑥U

,
𝜕𝐸
𝜕𝑦U

,
𝜕𝐸
𝜕𝑥U

de
d𝐫h

Thus	equation	[1] is	equivalent	to	solving	the	3𝑁 equations:		
𝜕𝐸
𝜕𝐫S

= 0;	
𝜕𝐸
𝜕𝐫T

= 0;……
𝜕𝐸
𝜕𝐫U

= 0

What	is	structural	optimization?	
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= Example: Consider	a	system	with	𝑁 = 2 atoms.	Suppose	that	atom	1	is	located	at	position	
𝐫S = (𝑥S, 0,0) and	atom	2	is	located	at	𝐫T = (𝑥T, 0,0)

= Suppose	the	(hypothetical)	energy	𝐸 of	the	2-particle	system	is	given	by:	
𝐸 𝑥S, 𝑥T = 𝑥ST + 2𝑥TT − 2𝑥S𝑥T − 2𝑥S − 𝑥T + 6

= A	plot	of	𝐸 is	shown	below:

What	is	structural	optimization?	
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What	is	structural	optimization?	
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= We	want	to	minimize	𝐸 with	respect	to	𝑥S and	𝑥T.			
The	conditions	are:

𝜕𝐸
𝜕𝑥S

= 2𝑥S − 2𝑥T − 2 = 0

𝜕𝐸
𝜕𝑥T

= 4𝑥T − 2𝑥S − 1 = 0

= The	solutions	to	the	equations	are:	
𝑥S = 2.5 and	𝑥T = 1.5;	

= The	minimum	energy	is	𝐸 2.5, 1.5	 = 2.75 [red	dot	is	
2.5, 1.5, 2.75 ]	

= Given	the	energy	of	a	2-atom	system:		𝐸 𝑥S, 𝑥T = 𝑥ST + 2𝑥TT − 2𝑥S𝑥T − 2𝑥S − 𝑥T + 6
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= Now	consider	a	more	realistic	scenario:	begin	with	a	random,	high	energy	𝑁-atom	structure	
[𝑁 = 1000 in	the	pictures]

= The	energy	𝐸(𝐫S, 𝐫T,… , 𝐫Srrr) of	the	system	can	be	a	bit	complicated.
= Optimizing	the	random	structure	implies:	minimizing	 the	total	energy 𝐸 by	adjusting	the	
positions	of	the	atoms	several	times to	yield	an	ordered	(or	semi-ordered),	low	energy	
structure.

What	is	structural	optimization?	
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Random Ordered

Minimize	𝐸 with	respect	to	positions

𝛻𝐸(𝐫S, 𝐫T, … , 𝐫U) ≈ 𝟎
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Optimization	problem:	Given		𝐸 ∶ 𝑅U → 𝑅,		minimize	𝐸 over	all	possible	values	of	𝑥⃗ ∈ 𝑅U,	
where	𝑥⃗ = (𝐫S, 𝐫T, . . , 𝐫U).

Possible	optimization	methods

= Gradient	based	methods
= Steepest	descent	method
= Conjugate	gradient	method
= Quasi-Newton	methods	[will	not	be	discussed]

= Stochastic	based	methods
= Metropolis	Monte	Carlo	method
= Particle	swarm/population	based	methods	[will	not	be	discussed]

Optimization	Methods
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First	a	quick	refresher	on	Taylor	series:	Suppose	that		𝑥 is	a	one-dimensional	variable	and	𝑥r is	
a	constant.	If	the	scalar	function 𝐸 is	differentiable,	then	the	Taylor	expansion of	𝐸(𝑥 + 𝑎) is

𝐸 𝑥 + 𝑥r = 𝐸 𝑥r + 𝑥
𝑑𝐸
𝑑𝑥z{|{}

+ 𝑥T
𝑑T𝐸
𝑑𝑥T~

{|{}

+⋯ = 𝐸 𝑥r + 𝑥𝛻𝐸 𝑥r + 𝑥T𝛻T𝐸 𝑥r + ⋯

Now	suppose	that		𝑥⃗ is	an	𝑁-dimensional	variable	vector	and	𝑥⃗r is	a	constant	vector.		Then	

𝐸 𝑥 + 𝑥r = 𝐸 𝑥r + 𝑥 � 𝐸 𝑥r +	𝑥� � 𝛻T𝐸 𝑥r � 𝑥 +⋯

Optimization	Methods
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Steepest	descent	in	1-dimension
= Suppose	we	want	to	minimize	a	1-dimensional	function	𝐸 𝑥 .

= Given	an	initial	point	𝑥r,	the	direction	of	steepest	descent,	i.e.	direction	of	greatest	change
from	𝑥r is	−𝛻𝐸(𝑥r).	

= Key	point:	if	we	follow	−𝛻𝐸 in	a	small	enough	steps,	𝐸 is	guaranteed	to	decrease.	To	see	
this,	consider	the	first	order	Taylor	expansion	of		𝐸 𝑥r :

𝐸 𝑥r + 𝛿𝑥 = 𝐸 𝑥r + 𝛿𝑥𝛻𝐸 𝑥r
where	𝛿𝑥 is	a	small	change	in	𝑥r [ignore (𝛿𝑥)T and	higher	powers]

= If	𝛿𝑥 is	chosen	to	be	𝛿𝑥 = −𝛼𝛻𝐸 𝑥r ,	where	𝛼 is	a	positive		parameter	called	the	step	
size,	then	the	decrease	in	𝐸 follows:

𝐸 𝑥r + 𝛿𝑥 = 𝐸 𝑥r − 𝛼 𝛻𝐸 𝑥r T < 𝐸 𝑥r

Steepest	Descent	Algorithm	
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Steepest	descent	in	N-dimensions
= We	want	to	minimize	a	N-dimensional function	𝐸 𝑥⃗ ,	where		𝑥⃗ ∈ 𝑅U is	a	vector	of	

dimensionN.

= Given	an	initial	point	𝑥⃗r,	the	direction	of	steepest	descent	from	𝑥⃗r	is	the	vector	−𝛻𝐸(𝑥⃗r).	

= Taylor	expansion:	the	first	order	Taylor	expansion	of		𝐸 𝑥⃗r :
𝐸 𝑥⃗r + 𝛿𝑥⃗ = 𝐸 𝑥⃗r + 𝛿𝑥⃗ � 𝛻𝐸 𝑥⃗r

= The	choice	of		𝛿𝑥⃗ = −𝛼𝛻𝐸 𝑥⃗r ,	where	𝛼 > 0,	ensures	that 𝐸 decrease	steadily	toward	
the	minimum.

Steepest	Descent	Algorithm	
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Steepest	Descent	Algorithm	
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Steepest	descent	algorithm
Pick	an	initial	point	𝑥⃗r
𝑖 → 0
𝛼 → 0.5
𝜀 = 0.000001
loop

−𝛻𝐸(𝑥⃗�) → ∆
if ∆ < 𝜀 stop
𝛼 → 2𝛼

while	𝐸 𝑥⃗� + 𝛼∆ ≥ 𝐸 𝑥⃗�
𝛼 → 𝛼 2⁄

end	while
𝑥⃗� + 𝛼∆→ 𝑥⃗��S
𝑖 + 1 → 𝑖

end	loop
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Steepest	Descent	Algorithm	
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Steepest	descent	minimization:	𝐸 𝑥S, 𝑥T = 𝑥ST + 𝑥TT

The	minimum	value	of	
𝐸 is	𝐸��� = 0;	this	
occurs	at	the	location	
𝑥S, 𝑥T = (0,0)

Left	plot: 3D	graph.

Right	plot:
corresponding	
projection	onto	the	2D	
plane	spanned	by		𝑥S
and	𝑥T (contour	plot).	
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Steepest	Descent	Algorithm	
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Steepest	descent	minimization:	Rosenbrock function	𝐸 𝑥S, 𝑥T = (1− 𝑥S)T + 100(𝑥TT − 𝑥S)T

The	minimum	value	of	
the	Rosenbrock
function	is	𝐸��� = 0;	
this	occurs	at	the	
location	 𝑥S, 𝑥T =
(1,1)

Left	plot: 3D	graph.

Right	plot: Contour	
plot	in	the	2D	plane	
spanned	by		𝑥S and	𝑥T.	
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Steepest	descent	advantages
= Easy	to	implement.

= Many	other	methods	switch	to	steepest	descent	when	they	do	not	make	sufficient	
progress.

Steepest	descent	advantages

= Picking the	step	size	𝛼 is	a	bit	of	a	dark	art.	A	small	𝛼 makes	the	determination	of	the	
solution	longer;	a	large	α can	make	the	algorithm	worse

= The	convergence	of	steepest	descent	algorithms	close	to	the	minimum	can	be	quite	slow.	

Steepest	Descent	Algorithm	
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Conjugate	gradient	method
= The	steepest	descent minimization	algorithm:

𝑥⃗��S = 𝑥⃗� − 𝛼�𝛻𝐸 𝑥⃗� = 𝑥⃗r − 𝛼S𝛻𝐸 𝑥⃗S − 𝛼T𝛻𝐸 𝑥⃗T −⋯− 𝛼�𝛻𝐸 𝑥⃗�
Until		𝛻𝐸 𝑥⃗��S ≈ 0	

where		𝑖 = 0, 1, 2,…
often	finds	itself	taking	steps	in	the	same	direction	as	earlier	steps.	

= This	makes	the	steepest	descent	method	woefully	inefficient!		It	will	be	more	efficient	if	a	
step	is	taken	only	once	(but	optimally).	This	lies	at	the	heart	of	the	conjugate	gradient	
method.

= Original	philosophy	of	conjugate	gradient	method:	pick	a	set	of	directions		{𝑑r,	𝑑S,….,	
𝑑U�S},	 known	as	conjugate	directions,	such	that	at	only	one	step	is	taken	along	each	
direction	𝑑� to	reach	the	minimum.	

Conjugate	Gradient	Algorithm	
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Conjugate	gradient	method:		exact	arithmetics
= For	a	given	function	𝐸 𝑥⃗ with	N variables,	you	are	guaranteed	to	reach	the	minimum
𝐸 𝑥⃗∗ in	exactly	N steps	if	𝐸 𝑥⃗ is	quadratic.

= Specifically,	given	an	initial	point	𝑥⃗r and	a	set	of	N conjugate	directions	{𝑑r,	𝑑S,….,	𝑑U�S},	
𝐸	attains	a	minimum	at	𝑥⃗ = 𝑥⃗∗ given	by:

𝑥⃗∗ = 𝑥⃗r + 𝛼r𝑑r + 𝛼S𝑑S +⋯+ 𝛼U�S𝑑U�S = 𝑥⃗r +� 𝛼�𝑑�
U�S

�|r
𝛻𝐸 𝑥⃗∗ = 0

where	𝛼� is	the	step	size	along	the	conjugate	direction	𝑑� .		

= Thus	the	employment	of	the	conjugate	gradient	method	boils	to	the	determination	of	the	
directions	{𝑑r,	𝑑S,….,	𝑑U�S} and	the	step	sizes	{𝛼r,	𝛼S,….,	𝛼U�S}.	

= Later	on,	we	will	present	methods	for	determining	{𝑑�}		and	{𝛼�}.

Conjugate	Gradient	Algorithm	
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Conjugate	gradient	method:		in	practice

= Advantage: The	conjugate	gradient	method	is	much	faster	than	the	steepest	descent	
method;	it	requires	much	less	steps	to	converge.

= Disadvantage:
(i) Its	implementation	is	slightly	more	involving	compared	to	the	steepest	descent	method;	
(ii) Due	to	rounding	errors,	the	conjugate	gradient		method	may	take	longer	to	converge
(iii) For	highly	disordered	structures,	the	conjugate	method	can	fail	miserably.	

= Implementation:We	will	present	two	iterative	conjugate	gradient	methods	that	can	be	
applied	in	practice;	they	are	Fletcher–Reeves	method	and	the	Polak–Ribiere method.

Conjugate	Gradient	Algorithm	
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Conjugate	Gradient	Algorithm	
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Fletcher–Reeves	and	Polak–Ribiere conjugate	gradient	algorithm
Step	1
Pick	an	initial	point	𝑥⃗r and	calculate	𝑔⃗r = 𝛻𝐸(𝑥⃗r);	set	𝑑r = −𝑔⃗r
Step	2
For 𝑖 = 0, 1, 2, …:

(a)	Find	the	value	of	𝛼� which	minimizes 𝐸(𝑥⃗� + 𝛼�𝑑�)
(b)	Set	𝑥⃗��S = 𝑥⃗� + 𝛼�𝑑� and	compute	the	gradient		𝑔⃗��S = 𝛻𝐸(𝑥⃗��S)
(c)	Test	for	convergence:	if 𝛻𝐸 𝑥⃗��S < 𝜀 then stop [𝜀 = 10��].	
(d)	Compute	the	next	conjugate	direction	𝑑��S given	by	𝑑��S = −𝑔⃗��S + 𝛽�𝑑�,		where	

𝛽� =
𝑔⃗��S T

𝑔⃗� T
				[Fletcher–Reeves	method]

𝛽� =
𝑔⃗��S − 𝑔⃗� � 𝑔⃗��S

𝑔⃗� T
								[Polak–Ribiere	method;	preferred	]

End	for
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Conjugate	Gradient	Algorithm	
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conjugate	gradient	method	and	the	steepest	descent	method	comparison:	Rosenbrock
function

Left	plot:	contour	plot	
of	steepest	descent	
minimization;	it	
requires	3300	
iterations	to	converge

Right	plot: contour	
plot	of	conjugate	
gradient	minimization;	
it	requires	only	15	
iterations	to	converge
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Stochastic	Optimization:	Metropolis	Monte	Carlo	Method	(MMC)	
= The	MMC employs	random	moves to	minimize	a	function;	it	is	quite	cheap [but	not	

necessarily	efficient]	as	no	gradients	are	required.	It	is	based	on	the	concept	of	Markov	
chains.	

= A	sequence	of	𝑁 + 1	successivemoves or events or states	𝑥⃗r, 𝑥⃗S, 𝑥⃗T … 𝑥⃗U�S, 𝑥⃗U form	a	
Markov	chain	if the	present	state	𝑥⃗U depends	on	only	the	immediate	past	state	𝑥⃗U�S
regardless	of	all	the	other	past	states	𝑥⃗r, 𝑥⃗S, 𝑥⃗T … 𝑥⃗U�T	:	

𝑃 𝑥⃗U 𝑥⃗r, 𝑥⃗S, 𝑥⃗T … 𝑥⃗U�S = 𝑃 𝑥⃗U 𝑥⃗U�S
= Here	𝑃 𝐵 𝐴 is	the	conditional	probability	that	the	event	𝐵 occurs	given	that	𝐴 has	

occurred.	

= In	Monte	Carlo	language,	the	conditional	probability	𝑃 𝐵 𝐴 is	also	known	as	the	transition	
probability	from	event𝐴 to	event	𝐵 (𝐴 is	the	present	event,	while	𝐵 future	event).

Monte	Carlo	Algorithm	
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Stochastic	Optimization:	Metropolis	Monte	Carlo	Method	(MMC)	

= MMC operates	on	two	key	principles,	namely,	egordicity and	detailed	balance.

= Egordicity: For	a	given	system,	a	given	state	𝑥⃗� can	be	reached	from	the	state	𝑥⃗� in	a	finite	
number	of	steps.

= Detailed	balance: For	a	given	system,	the	average	number	of	times	the	state	𝑥⃗� can	be	
reached	from	the	state	𝑥⃗� equals	the	average	number	of	times	𝑥⃗�	can	be	reached	from	𝑥⃗�.	

Monte	Carlo	Algorithm	
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Stochastic	Optimization:	Metropolis	Monte	Carlo	Method	(MMC)	
Philosophy	behind	the	practical	application	of	MMC	minimization
(i)	Suppose	that	an	atomic	structure	begins	in	a	state	with	coordinates	𝑥⃗r and	energy	𝐸(𝑥⃗r).	
We	assign	a	fictitious	temperature	𝑇 to	the	system	to	measure	its	“hotness.”	

(ii)	Conceptually,	MMC		operates	by	gradually	cooling the	system	to	from	a	“hot,	unstable”	
state	𝑥⃗r to	a	“cold,	minimum	energy”	state 𝑥⃗S using	random	atomic	displacements.	This		“hot-
to-cool”	process	in	falls	under	a	general	minimization	method known	as	simulated	annealing.			

(iii)	The	transition	probability	𝑃(𝑥⃗S 𝑥⃗r from	𝑥⃗r to	𝑥⃗S is	given	by	the	Metropolis	criterion:

𝑃(𝑥⃗S 𝑥⃗r = min 1, 𝑒���e

where	𝛽 = 1 (𝑘�𝑇)⁄ and	𝑘� is	a	fundamental	constant	known	as		Boltzmann’s	constant.	

Monte	Carlo	Algorithm	
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Optimization	Methods	
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The	Metropolis	Monte	Carlo	algorithm
Step	1: Pick	a	fictious	temperature	𝑇 and	begin	in	an	initial	state	𝑥⃗r with	total	energy	𝐸(𝑥⃗r).

Step	2:	 Generate	a	new	state	𝑥⃗S from	𝑥⃗r via	random displacements	of	the	atomic	positions.	
Denote	the	total	energy	of	𝑥⃗S by	𝐸(𝑥⃗S).

Step	3: Compute	the	energy	difference	Δ𝐸 = 𝐸(𝑥⃗S) − 𝐸(𝑥⃗r) and	compute	the	transition	
probability	from	state	𝑥⃗r to	state	𝑥⃗S as	𝑃(𝑥⃗S 𝑥⃗r = min 1, 𝑒���e ,	where	𝛽 = 1 (𝑘�𝑇)⁄ .

Step	4: Generate	a	uniform	random	number	𝑟 such	that	0 ≤ 𝑟 < 1.		
(a)If	𝑟 < 𝑃(𝑥⃗S 𝑥⃗r ,	then	replace	𝑥⃗r with	𝑥⃗S and	𝐸(𝑥⃗r) with	𝐸(𝑥⃗S) and		go	to	step	2.
(a)If	𝑟 ≥ 𝑃(𝑥⃗S 𝑥⃗r ,	then	discard	𝑥⃗S and	go	to	step	2.

Additional	information:	As	the	simulation	proceeds,	the	temperature	𝑇 is	gradually	reduced.	
Convergence	is	established	by	closely	monitoring	𝐸.	
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Monte	Carlo	Algorithm	
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Metropolis	Monte	Carlo	method	in	action:	minimizing	the	Rosenbrock function	

The	minimum	value	
of	the	Rosenbrock
function	is	𝐸��� = 0;	
this	occurs	at	the	
location	 𝑥S, 𝑥T =
(1,1)

Left	plot: 3D	graph.

Right	plot: Contour	
plot	in	the	2D	plane	
spanned	by		𝑥S and	
𝑥T.	
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= Three	minimization	schemes,	all	of	which	are	fairly	easy	to	implement	in	computer	codes,	
were	presented:	(i)	steepest	descent (ii)	conjugate	gradient (iii)	Metropolis	Monte	Carlo

= The	steepest	descent and	conjugate	gradient methods	are	gradient-based (i.e.	based	on	
the	evaluation	of	first	partial	derivative),	while	the	Monte	Carlo method	does	not	require	
gradients.	

= For	practical	applications,	the	conjugate	gradient	method	is	preferred;	steepest	descent	can	
be	used	as	a	supplement in	instances	where	the	conjugate	gradient	method	gets	“stuck.”

= For	“quick	and	approximate	results,”	the	Monte	Carlo	method, which	is	the	easiest	to	
implement,	can	be	employed.

Concluding	Remarks	
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