Introduction to Structural Optimization

Raymond Atta-Fynn (University of Texas, Arlington) NSF Summer School on Disordered Materials Modeling *Summer 2019* attafynn@uta.edu

Outline

• What is structural optimization?

- Optimization algorithms
	- Steepest descent algorithm
	- Conjugate gradient algorithm
	- Monte Carlo method

• Closing remarks

What is structural optimization?

Structural optimization is the process of using computer algorithms to minimize the energy of an atomistic structure.

Specifically, the atomic positions are displaced sequentially [following a set of rules] until a minimum energy state is reached.

- An atomistic structure is a set atoms with well-defined positions (or coordinates).
- Several properties of an atomistic structure are best described when the structure is in a minimum energy state; this is a major reason why structural optimization is performed

- Goal of structural optimization: Minimize the total energy E of a set of N atoms with respect to the atomic positions $\{r_1, r_2,..., r_N\} \equiv \{(x_1, y_1, z_1), (x_2, y_2, z_2), (x_N, y_N, z_N)\}.$
- E is a function of $\{r_1, r_2,..., r_N\}$, that is: $E \equiv E(r_1, r_2,..., r_N)$. E depends on 3N variables.
- \bullet The condition for E to be a minimum is:

$$
\nabla E(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) = \mathbf{0} \qquad [1]
$$

where ∇E is a *vector known as the gradient* of E given by:

$$
\nabla E = \left(\frac{\partial E}{\partial \mathbf{r}_1}, \frac{\partial E}{\partial \mathbf{r}_2}, \dots, \frac{\partial E}{\partial \mathbf{r}_N}\right) = \left(\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial y_1}, \frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}, \frac{\partial E}{\partial y_2}, \frac{\partial E}{\partial x_2}, \dots, \frac{\partial E}{\partial x_N}, \frac{\partial E}{\partial y_N}, \frac{\partial E}{\partial x_N}\right)
$$

Thus equation $\lceil 1 \rceil$ is equivalent to solving the 3N equations:

$$
\frac{\partial E}{\partial \mathbf{r}_1} = 0; \frac{\partial E}{\partial \mathbf{r}_2} = 0; \dots \dots \frac{\partial E}{\partial \mathbf{r}_N} = 0
$$

- Example: Consider a system with $N = 2$ atoms. Suppose that atom 1 is located at position ${\bf r}_1 = (x_1, 0, 0)$ and atom 2 is located at ${\bf r}_2 = (x_2, 0, 0)$
- Suppose the (hypothetical) energy E of the 2-particle system is given by: $E(x_1, x_2) = x_1^2 + 2x_2^2 - 2x_1x_2 - 2x_1 - x_2 + 6$
- \bullet A plot of E is shown below:

- Given the energy of a 2-atom system: $E(x_1, x_2) = x_1^2 + 2x_2^2 2x_1x_2 2x_1 x_2 + 6$
- We want to minimize E with respect to x_1 and x_2 . The conditions are:

$$
\frac{\partial E}{\partial x_1} = 2x_1 - 2x_2 - 2 = 0
$$

$$
\frac{\partial E}{\partial x_2} = 4x_2 - 2x_1 - 1 = 0
$$

 \bullet The solutions to the equations are:

 $x_1 = 2.5$ and $x_2 = 1.5$;

• The minimum energy is $E(2.5, 1.5) = 2.75$ [red dot is $(2.5, 1.5, 2.75)]$

Raymond Atta-Fynn

6/3/2019 **I** Raymond Atta-Fynn **Introduction** to Structural Optimization **6** 6

- \bullet Now consider a more realistic scenario: begin with a random, high energy N-atom structure $[N = 1000$ in the pictures]
- The energy $E(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_{1000})$ of the system can be a bit complicated.
	- Optimizing the random structure implies: minimizing the total energy E by adjusting the positions of the atoms several times to yield an ordered (or semi-ordered), low energy structure.

Optimization Methods

Optimization problem: Given $E: R^N \to R$, minimize E over all possible values of $\vec{x} \in R^N$, where $\vec{x} = (\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$.

Possible optimization methods

- Gradient based methods
	- Steepest descent method
	- Conjugate gradient method
	- Quasi-Newton methods [will not be discussed]
- Stochastic based methods
	- Metropolis Monte Carlo method
	- Particle swarm/population based methods [will not be discussed]

Optimization Methods

First a quick refresher on Taylor series: Suppose that x is a one-dimensional variable and x_0 is a constant. If the scalar function E is differentiable, then the Taylor expansion of $E(x + a)$ is

$$
E(x + x_0) = E(x_0) + x \frac{dE}{dx}\bigg|_{x = x_0} + x^2 \frac{d^2E}{dx^2}\bigg|_{x = x_0} + \dots = E(x_0) + x\overline{V}E(x_0) + x^2\overline{V}^2E(x_0) + \dots
$$

Now suppose that \vec{x} is an N-dimensional variable vector and \vec{x}_0 is a constant vector. Then

$$
E(\vec{x} + \vec{x}_0) = E(\vec{x}_0) + \vec{x} \cdot E(\vec{x}_0) + \vec{x}^{\mathrm{T}} \cdot \nabla^2 E(\vec{x}_0) \cdot \vec{x} + \cdots
$$

Steepest descent in 1-dimension

- Suppose we want to minimize a 1-dimensional function $E(x)$.
- Given an initial point x_0 , the direction of steepest descent, i.e. direction of greatest change from x_0 is $-\nabla E(x_0)$.
- Key point: if we follow $-\nabla E$ in a *small enough steps, E* is *guaranteed to decrease*. To see this, consider the first order Taylor expansion of $E(x_0)$: $E(x_0 + \delta x) = E(x_0) + \delta x \nabla E(x_0)$

where δx is a small change in x_0 [ignore $(\delta x)^2$ and higher powers]

• If δx is chosen to be $\delta x = -\alpha \nabla E(x_0)$, where α is a **positive parameter called the step** size, then the decrease in E follows:

$$
E(x_0 + \delta x) = E(x_0) - \alpha |\nabla E(x_0)|^2 < E(x_0)
$$

Steepest descent in *N*-dimensions

- We want to minimize a *N*-dimensional function $E(\vec{x})$, where $\vec{x} \in R^N$ is a vector of dimension *N*.
- Given an initial point \vec{x}_0 , the direction of steepest descent from \vec{x}_0 is the vector $-\nabla E(\vec{x}_0)$.
- Taylor expansion: the first order Taylor expansion of $E(\vec{x}_0)$: $E(\vec{x}_0 + \delta \vec{x}) = E(\vec{x}_0) + \delta \vec{x} \cdot \nabla E(\vec{x}_0)$
- The choice of $\delta \vec{x} = -\alpha \nabla E(\vec{x}_0)$, where $\alpha > 0$, ensures that E decrease steadily toward the minimum.

Steepest descent algorithm

```
Pick an initial point \vec{x}_0i \rightarrow 0\alpha \rightarrow 0.5\varepsilon = 0.000001loop
    -\nabla E(\vec{x}_i) \rightarrow \Deltaif |\Delta| < \varepsilon stop
       \alpha \rightarrow 2\alphawhile E(\vec{x}_i + \alpha \Delta) \ge E(\vec{x}_i)\alpha \rightarrow \alpha/2end	while
      \vec{x}_i + \alpha \Delta \rightarrow \vec{x}_{i+1}i + 1 \rightarrow iend	loop
```
Raymond Atta-Fynn

Steepest descent minimization: $E(x_1, x_2) = x_1^2 + x_2^2$

Raymond Atta-Fynn (UT Arlington), NSF Summer School 2019

Bowl Function: $E(x_1,x_2)=x_1^2+x_2^2$; starting point for steepest descent minimization $(x_1,x_2)=(3,3)$

Steepest descent: step #1; $(x_1,x_2)=(3.000,3.000)$; E=18.000000

The minimum value of E is $E_{min} = 0$; this occurs at the location $(x_1, x_2) = (0,0)$ Left plot: 3D graph.

Right plot: corresponding projection onto the 2D plane spanned by x_1 and x_2 (contour plot).

Raymond Atta-Fynn

6/3/2019 **I** Raymond Atta-Fynn **Introduction** to Structural Optimization 13

Steepest descent minimization: Rosenbrock function $E(x_1, x_2) = (1 - x_1)^2 + 100(x_2^2 - x_1)^2$

Raymond Atta-Fynn (UT Arlington), NSF Summer School 2019

Rosenbrock function: $E(x_1,x_2)=(1-x_1)^2+100*(x_2-x_1)^2$; minimization starting point $(x_1,x_2)=(0,2)$

Steepest descent: step #1; $(x_1,x_2)=(0.0000,2.0000)$; E=401.0000

The minimum value of the Rosenbrock function is $E_{min} = 0$; this occurs at the $\text{location } (x_1, x_2) =$ $(1,1)$

Left plot: 3D graph.

Right plot: Contour plot in the 2D plane spanned by x_1 and x_2 .

Raymond Atta-Fynn

Steepest descent advantages

• Easy to implement.

• Many other methods switch to steepest descent when they do not make sufficient progress.

Steepest descent advantages

• Picking the step size α is a bit of a dark art. A small α makes the determination of the solution longer; a large α can make the algorithm worse

• The convergence of steepest descent algorithms close to the minimum can be quite slow.

Conjugate gradient method

The steepest descent minimization algorithm:

 $\vec{x}_{i+1} = \vec{x}_i - \alpha_i \nabla E(\vec{x}_i) = \vec{x}_0 - \alpha_1 \nabla E(\vec{x}_1) - \alpha_2 \nabla E(\vec{x}_2) - \dots - \alpha_i \nabla E(\vec{x}_i)$ Until $\nabla E(\vec{x}_{i+1}) \approx 0$

where $i = 0, 1, 2, ...$

often finds itself taking steps in the same direction as earlier steps.

- This makes the steepest descent method woefully inefficient! It will be more efficient if a step is taken only once (but optimally). This lies at the heart of the conjugate gradient method.
- Original philosophy of conjugate gradient method: pick a set of directions $\{\vec{d}_0, \vec{d}_1, ...,$ \vec{d}_{N-1} }, known as conjugate directions, such that at only one step is taken along each direction \vec{d}_i to reach the minimum.

Conjugate gradient method: exact arithmetics

- For a given function $E(\vec{x})$ with *N* variables, you are guaranteed to reach the minimum $E(\vec{x}^*)$ in exactly N steps if $E(\vec{x})$ is quadratic.
- Specifically, given an initial point \vec{x}_0 and a set of N conjugate directions $\{\vec{d}_0, \vec{d}_1, ..., \vec{d}_{N-1}\}$, E attains a minimum at $\vec{x} = \vec{x}^*$ given by:

$$
\vec{x}^* = \vec{x}_0 + \alpha_0 \vec{d}_0 + \alpha_1 \vec{d}_1 + \dots + \alpha_{N-1} \vec{d}_{N-1} = \vec{x}_0 + \sum_{i=0}^{N-1} \alpha_i \vec{d}_i
$$

$$
\nabla E(\vec{x}^*) = 0
$$

where α_i is the step size along the conjugate direction \vec{d}_i .

- Thus the employment of the conjugate gradient method boils to the determination of the directions $\{\vec{d}_0, \vec{d}_1, ..., \vec{d}_{N-1}\}$ and the step sizes $\{\alpha_0, \alpha_1, ..., \alpha_{N-1}\}.$
- Later on, we will present methods for determining $\{\vec{d}_i\}$ and $\{\alpha_i\}$.

Conjugate gradient method: in practice

• Advantage: The conjugate gradient method is much faster than the steepest descent method; it requires much less steps to converge.

- Disadvantage:
- (i) Its implementation is slightly more involving compared to the steepest descent method;
- (ii) Due to rounding errors, the conjugate gradient method may take longer to converge
- (iii) For highly disordered structures, the conjugate method can fail miserably.
- Implementation: We will present two iterative conjugate gradient methods that can be applied in practice; they are Fletcher–Reeves method and the Polak–Ribiere method.

Fletcher–Reeves and Polak–Ribiere conjugate gradient algorithm

Step 1

Pick an initial point \vec{x}_0 and calculate $\vec{g}_0 = \nabla E(\vec{x}_0)$; set $\vec{d}_0 = -\vec{g}_0$

Step 2

For $i = 0, 1, 2, ...$

- (a) Find the value of α_i which minimizes $E(\vec{x}_i + \alpha_i \vec{d}_i)$
- (b) Set $\vec{x}_{i+1} = \vec{x}_i + \alpha_i \vec{d}_i$ and compute the gradient $\vec{g}_{i+1} = \nabla E(\vec{x}_{i+1})$ (c) Test for convergence: if $|\nabla E(\vec{x}_{i+1})| < \varepsilon$ then stop $[\varepsilon = 10^{-4}]$.

(d) Compute the next conjugate direction \vec{d}_{i+1} given by $\vec{d}_{i+1} = -\vec{g}_{i+1} + \beta_i \vec{d}_i$, where

$$
\beta_i = \frac{|\vec{g}_{i+1}|^2}{|\vec{g}_i|^2}
$$
 [Fletcher–Reeves method]

$$
\beta_i = \frac{(\vec{g}_{i+1} - \vec{g}_i) \cdot \vec{g}_{i+1}}{|\vec{g}_i|^2}
$$

[Polak–Ribiere method; preferred]

End for

Raymond Atta-Fynn

6/3/2019 **Introduction to Structural Optimization** 19

conjugate gradient method and the steepest descent method comparison: Rosenbrock

Raymond Atta-Fynn (UT Arlington), NSF Summer School 2019

Rosenbrock function: $E(x_1,x_2)=(1-x_1)^2+100*(x_2-x_1)^2$; minimization starting point $(x_1,x_2)=(0,2)$

Conqugate gradient: step #1

Left plot: contour plot of steepest descent minimization; it requires 3300 iterations to converge

Right plot: contour plot of conjugate gradient minimization; it requires only 15 iterations to converge

Raymond Atta-Fynn

6/3/2019 **Introduction to Structural Optimization 19th Control 20** and the Uniteduction to Structural Optimization

Stochastic Optimization: Metropolis Monte Carlo Method (MMC)

- The MMC employs *random moves* to minimize a function; it is quite cheap [but not *necessarily efficient*] as no gradients are required. It is based on the concept of Markov chains.
- A sequence of $N + 1$ successive moves or *events* or *states* \vec{x}_0 , \vec{x}_1 , \vec{x}_2 ... \vec{x}_{N-1} , \vec{x}_N form a Markov chain if the present state \vec{x}_N depends on only the immediate past state \vec{x}_{N-1} regardless of all the other past states \vec{x}_0 , \vec{x}_1 , \vec{x}_2 ... \vec{x}_{N-2} :

$$
P(\vec{x}_N|\vec{x}_0, \vec{x}_1, \vec{x}_2 \dots \vec{x}_{N-1}) = P(\vec{x}_N|\vec{x}_{N-1})
$$

- \bullet Here $P(B|A)$ is the conditional probability that the event B occurs given that A has occurred.
- \bullet In Monte Carlo language, the conditional probability $P(B|A)$ is also known as the *transition probability from event A to event B (A is the present event, while B future event).*

Stochastic Optimization: Metropolis Monte Carlo Method (MMC)

- MMC operates on two key principles, namely, *egordicity* and *detailed balance*.
- **Egordicity:** For a given system, a given state \vec{x}_j can be reached from the state \vec{x}_i in a finite number of steps.
- **Detailed balance:** For a given system, the average number of times the state \vec{x}_j can be reached from the state $\vec{x_i}$ equals the average number of times $\vec{x_i}$ can be reached from $\vec{x_j}.$

Stochastic Optimization: Metropolis Monte Carlo Method (MMC)

Philosophy behind the practical application of MMC minimization

(i) Suppose that an atomic structure begins in a state with coordinates \vec{x}_0 and energy $E(\vec{x}_0)$. We assign a fictitious temperature T to the system to measure its "hotness."

(ii) Conceptually, **MMC** operates by gradually cooling the system to from a "hot, unstable" state \vec{x}_0 to a "cold, minimum energy" state \vec{x}_1 using random atomic displacements. This "hotto-cool" process in falls under a general minimization method known as *simulated annealing*.

(iii) The transition probability $P(\vec{x}_1|\vec{x}_0)$ from \vec{x}_0 to \vec{x}_1 is given by the <u>Metropolis criterion</u>: $P(\vec{x}_1 | \vec{x}_0) = \min(1, e^{-\beta \Delta E})$

where $\beta = 1/(k_B T)$ and k_B is a fundamental constant known as Boltzmann's constant.

Optimization Methods

The Metropolis Monte Carlo algorithm

Step 1: Pick a fictious temperature T and begin in an initial state \vec{x}_0 with total energy $E(\vec{x}_0)$.

Step 2: Generate a new state \vec{x}_1 from \vec{x}_0 via *random* displacements of the atomic positions. Denote the total energy of \vec{x}_1 by $E(\vec{x}_1)$.

Step 3: Compute the energy difference $\Delta E = E(\vec{x}_1) - E(\vec{x}_0)$ and compute the transition probability from state \vec{x}_0 to state \vec{x}_1 as $P(\vec{x}_1|\vec{x}_0) = \min(1, e^{-\beta \Delta E})$, where $\beta = 1/(k_B T)$.

Step 4: Generate a uniform random number r such that $0 \le r < 1$. (a)If $r < P(\vec{x}_1 | \vec{x}_0)$, then replace \vec{x}_0 with \vec{x}_1 and $E(\vec{x}_0)$ with $E(\vec{x}_1)$ and go to step 2. (a)If $r \ge P(\vec{x}_1 | \vec{x}_0)$, then discard \vec{x}_1 and go to step 2.

Additional information: As the simulation proceeds, the temperature T is gradually reduced. Convergence is established by closely monitoring E .

Metropolis Monte Carlo method in action: minimizing the Rosenbrock function

Raymond Atta-Fynn (UT Arlington), NSF Summer School 2019

Rosenbrock function: $E(x_1,x_2)=(1-x_1)^2+100*(x_2-x_1)^2$; minimization starting point $(x_1,x_2)=(0,2)$

2500 2500 2000 2000 $\overline{2}$ 1500 $\mathsf{E}(x_1,x_2)$ 1500 1000 λ ¹ 500 1000 52 $\mathbf 0$ $\mathsf O$ 500 x_2 $\overline{\circ}_{x_1}$ -1 -1 $\mathbf{1}$ $\overline{2}$ 0 x_1

Monte Carlo with $k_B T = 8.617E-4$: step #4; acceptance probability=0.2500; $(x_1, x_2) = (0.0869, 1.9767)$; E=357.9537

The minimum value of the Rosenbrock function is $E_{min} = 0$; this occurs at the location $(x_1, x_2) =$ $(1,1)$

Left plot: 3D graph.

Right plot: Contour plot in the 2D plane spanned by x_1 and \mathcal{X}_{2} .

Raymond Atta-Fynn

6/3/2019 **Introduction to Structural Optimization 19th Control 25** and the Uniteduction to Structural Optimization

Concluding Remarks

- Three minimization schemes, all of which are fairly easy to implement in computer codes, were presented: (i) steepest descent (ii) conjugate gradient (iii) Metropolis Monte Carlo
- The steepest descent and conjugate gradient methods are gradient-based (i.e. based on the evaluation of first partial derivative), while the Monte Carlo method does not require gradients.
- For practical applications, the conjugate gradient method is preferred; steepest descent can be used as a supplement in instances where the conjugate gradient method gets "stuck."
- For "quick and approximate results," the Monte Carlo method, which is the easiest to implement, can be employed.