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Abstract

We first provide motivation by giving Integral equations that we rou-
tinely solve as examples. We then describe the method of Gaussian
quadrature with some examples. Finally we show how to solve an in-
tegral equation that is usually encountered in quantum mechanical bound
state problem.

1 Introduction

Physicists deal with integrals, integral equations and integro-differential equa-
tions everyday. For example, the most general Schroedinger equation in position
space with nonlocal potential is an integro-differential equation. Schroedinger
equation in momentum space is a homogeneous integral equation and Lippman-
Schwinger equation, which is a Schroedinger equation with scattering boundary
condition is an inhomogeneous integral equation. Here, we give a simple but
most frequently encountered integral equation as an example. Consider the
Schreodinger equation in momentum space. Most students are familiar with
the position space representation of the Schroedinger equation, which is a sec-
ond order partial differential equation. It is of the form

[− h̄2

2µ
∇2 + V (r)]Ψ(r̄) = EΨ(r̄) (1)

This equation is never solved in this 3-dimensional form. Before it can be solved,
the angular dependence must be separated. For simplicity of presentation, we
will consider the systems where the orbital angular momentum l is a good
quantum number. After the separation of variables, we obtain

[− h̄2

2µ
(
1

r

d2

dr2
r) +

h̄2l(l + 1)

2µr2
− V (r)]R(r) = ER(r) (2)
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The above equation can be solved for bound states or scattering problems by
employing appropriate boundary conditions. Now, in momentum representa-
tion, the analogous 3-dimensional equation for bound states is

p2

2µ
Φ(p) +

∫
⟨p|V |p′⟩Φ(p′)dp′ = EΦ(p) (3)

Here ⟨p|V |p′⟩ is the Fourier transform of the r-space potential V (r) and is given
by (We will use the units where h̄ = c = 1)

⟨p|V |p′⟩ = 1

(2π)3

∫
exp(−ip · r)V (r)dr (4)

Just like the position space Schroedinger equation, we do not solve this 3-
dimensional integral equation directly. We will follow the way it is done in
position space and seperate the anguular variables first. Now, to do the angular
separation, we perform the partial wave decomposition for potentials that do
not couple orbital angular momentum as follows,

Φ(p) = ϕl(p)Y
m
l (p̂) (5)

⟨p|V |p′⟩ =

∞∑
l=0

m=l∑
m=−l

Vl(p, p
′)Y m

l (p̂)Y m∗

l (p̂′) (6)

After this equation(3) becomes

p2

2µ
ϕl(p) +

∞∫
0

Vl(p, p
′)ϕl(p)p

′2dp′ = Eϕl(p) (7)

where Vl(p, p
′) is the lth partial wave component of ⟨p|V |p′⟩ and is given by

Vl(p.p
′) = 2π

1∫
−1

⟨p|V |p′⟩Pl(x)dx (8)

where x = cos θ and we have used the following identities.

∫
Y m
l (p̂)Y m∗

l (p̂dp̂ = δll′δmm′ (9)

1∫
−1

Pl(x)Pl′(x)dx =
2δll′

2L+ 1
(10)

l∑
m=−l

Y m
l (p̂)Y m∗

l (p̂ =
2l + 1

4π
Pl(x) (11)
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The next thing we want to do is to solve Eq. 7. In order to do that, we expand
the wavefunction ϕl(p) in terms of known orthonormal set of basis functions. i.e

ϕl(p) =
N∑

n=1

Cngn(p) (12)

where the functions {gn(p)} are known functions and form a complete orthonor-
mal set. After the expansion, we multiply with gm(p)p2 and by integrating over
dp we obtain our desired matrix eigenequation

N∑
n=1

Cn{
∞∫
0

p2

2µ
gm(p)gn(p)p

2dp+

∞∫
0

∞∫
0

Vl(p, p
′)gm(p)gn(p

′)p2p′2dpdp′} = Cm

(13)
Since the terms in the braces depends only on the indices n and m, by naming
it Dmn, we get

N∑
n=1

DmnCn = ECm (14)

Obviously, from this matrix eigenvalue equation, we can solve for the eigen
energies and also the eigenvectors where the expansion coefficients Cn are the
componenets of the eigenvectors. Note that, for an N ×N matrix, we will get
N number of eigenvalues (E’s) and for each eigenvalue, there is a corresponding
eigenvector given by a set of Cn’s. Once an eigenvalue (Energy) is known, we
can construct the wavefunction for that state from the corresponding Cn’s by
using Eq. 12.
All this can be done, provided that we have the matrixDmn. Obviously, in order
to find the matrix elements of the matrix D, we must be able to evaluate the
integrals in Eq. 13. Only in the rarest of circumstances, the integrals involved
can be done analytically. In the following, I present a very accurate and most
commonly used numerical integration method.

Gaussian Quadrature

In this section, I will describe how to use Gaussian quadrature method with-
out proofs. Gaussian quadrature was designed by Karl Fredric Gauss. It simply
states that

+1∫
−1

f(x)dx =
N∑
i=1

f(xi)wi + Error (15)

Here the Error term is usually very small and I will not mention it again. In
the above formula, xi are the root of the Legendre polynomial PN (x). Since
the N th order Legendre polynomial has N number of roots, we say that we are
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using N number of integration points. wi are called the weights and they are
given by

wi =
1

[1− x2
i ][P

′
N (xi)]2

(16)

Where P ′
N (xi) is the derivitive of PN (x) evaluated at xi.

We first illustrate the method for a very simple case. Consider N = 2 . In this
case, P2(x) =

1
2 (3x

2− 1) and P ′
2(x) = 3x. Therefore, we obtains the roots of P2

which are x1 = −
√
1/3 and x2 =

√
1/3. By using the formula for the weight,

we obtain w1 = 1 and w2 = 1. As an example, consider the integral∫ 1

1

x2dx =
2

3
(17)

Now by direct application of the Gaussian integration formula, we obtain

1∫
1

x2dx =
2∑

i=1

x2
iwi (18)

= x2
1w1 + x2

2w2 (19)

=
2

3
(20)

Note that this gives us an exact answer. Gaussian quadrature is designed so
that if the integrand is an N th order polynomial, exact result can be achieved
by using N point integration. So far, the limits are from −1 to 1 and it is not
directly applicable for most integrals of interest. In order to remedy that, we
consider the next example with different limits.

I =

b∫
a

f(y)dy (21)

In order to use our Gaussian quadrature formlula ( with limits −1 to 1), we use
a linear transformation

y = mx+ c (22)

dy = mdx (23)

What we want is to find the slope m and the y-intercept c so that when y = a,
the lower limit for x is −1 and for y = b, the upper limit for x is +1. This
gives us two equations with two unknowns and results in m = (b − a)/2 and
c = (b+ a)/2. Therefore our integral becomes,

b∫
a

f(y)dy =

+1∫
−1

f [y(x)] mdx (24)

=
(b− a)

2

N∑
i=1

f [yi(xi)]wi (25)

4



Another most commonly encountered limits of integration are from zero or a to
∞. This can also be done by using the following transformation.

y = a+ tan[
π

4
(x+ 1)] (26)

dy =
π

4
Sec2[

π

4
(x+ 1)]dx (27)

Obviously, these are not the only transformations possible. One should explore
the most suitable transformations for each problem, but the above transforma-
tions work well for a large variety of integrals and physical problems.

A note on Legendre polynomials and finding the points and weights.

Legendre polynomials of the first kind Pl(x) are solutions of the Legendre
differential equation. The other linearly independent solution is called the Leg-
endre polynomial of the second kind and denoted by Ql(x). The differential
equation is

(1− x2)
d2w

dx2
− 2x

dw

dx
+ l(l + 1)w = 0 (28)

Analytically, Pn(x) can be generated from the Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (29)

For numerical calculations, it is best suited to use the recurrence relation with
starting expressions P0(x) = 1 and P1(x) = x. These can be used in a bootstrap
calculation together with the following recurrsion relation

Pn+1(x) =
1

n+ 1
[(2n+ 1)xPn(x)− nPn−1(x)] (30)

This recurrence relation can be used to generate any Pl(x) for a given x. For
a given N , one could find the roots of PN (x) by any root finding algorithm.
Even a simple interval bisection method works well up to N = 160. One can
avoid finding roots and weights altogether if one is willing to subdivide the
range of integration into pieces and using 2 points or 4 points integration for
each subdivision. For that purpose, I provide the following table. NOTE: The
zeros of PN are symmetric about x = 0 therefore we give only the positive one.
For example, for N = 2, only x1 and w1 are given. x2 = −x1 and weights are
always positive and w2 = w1.
N=2

x1 = 0.7735 02691 89626 w1 = 1.00000 00000 00000

N=4

x1 = 0.33998 10435 84856 w1 = 0.65214 51548 62546

x2 = 0.86113 63115 94053 w2 = 0.34785 48451 37454
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N=8

x1 = 0.18343 46424 95650 w1 = 0.36264 37833 78362

x2 = 0.52553 24099 16329 w2 = 0.31370 66458 77887

x3 = 0.79666 64774 13627 w3 = 0.22238 10344 53374

x4 = 0.96028 98564 97536 w4 = 0.10122 85362 90376

Test of Convergence
As in any integration method, one must test the convergence of integration.
The first thing to test the correctness of your integration program or routine
is to test against an integral whose analytical answer is known. For example
∞∫
∞

exp(−x2)dx =
√
π is a good test. Once the correctness of the program is

tested, you can test on integrals whose answer is not known. One should start
with a small number of integration points first. As you increase the number of
integration points ( provided that you have a routine to generate Gauss points
and weights for any N), the answer should converge to a certain number. You
could give a number to your convergence by defining a percentage difference
between the last two results as (An+1 −An)/An+1100%.
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