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|. Motivation: Understanding Thermal Fluctuation/Dissipation of Lattices
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|. Motivation: Understanding Thermal Fluctuations of Atomic Lattices




|. Motivation: Predicting Lattice Thermal Conductivity from first-principles
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. Motivation: Predicting Lattice Thermal Conductivity from first-principles

Subduction zone

What is the present T profile?
Surface flux ?
Convection style?
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ll. Phonon Boltzmann Transport Equation (BTE)

Why Not Non-equilibrium MD Simulations ?

Non-Equilibrium Steady States
(a) Direct MD simulations in real-space: Newton’s 2nd Law
(b) Kinetic energy transfer: no additional heat current definition needed
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How to engineer thermal Interfacial conductance?
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Il. Phonon Boltzmann Transport Equation (BTE)

Why Not Green-Kubo (GK) Method?
Q
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Il. Phonon Boltzmann Transport Equation (BTE)
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Theoretical Study of the Lattice Thermal Conductivity in Ge Framework Semiconductors
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TABLE 1. Results of the MD simulations for the four different Ge materials. The final column

is experiment, where available. All results are at 300 K.

(c) Pure clathrate: Ge,,

Material
(No. atoms)

71
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l ll. Phonon Boltzmann Transport Equation (BTE) l

Phonon Gas Model

What is a phonon? What is the phonon
gas model (PGM)?
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Potential Energy

Step 1: harmonic potential + normal modes (eigen-frequencies & eigen-vectors)

Simple harmonic oscillation

Ideal case: no friction

Hooke's law: F = —kx ]

Newton's 2nd law: F = m.'\‘f
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ll. Phonon Boltzmann Transport Equation (BTE)
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ll. Phonon Boltzmann Transport Equation (BTE)

The underdamped response of the oscilator
Overdamped s desorbed by the equation:

x=e"acos|w -]

Oee-halt of
critical
damging

One-tenth
of erical
dampryg

Phiysics of the Earth and Panetary Interiors 174 (2009) 33-38
Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journal homepage: www.elsevier.com/locate/pepi

Pressure dependence of harmonic and anharmonic lattice dynamics in MgO:
A first-principles calculation and implications for lattice thermal conductivity

Xiaoli Tang*, Jianjun Dong

Physics Department, Auburn University, Auburn, Alabama 36849-5311, United States




ll. Phonon BTE — first-principles implementation

Phonon gas model| K=l

phonon-phonon scattering 3%

First-principles calculations Quantum Scattering Theory
1 27T

2nd order force O*E P P/ = Y (f|aH| i>‘26(8f —¢€;)
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ai  Pjl ykl'

d ' o 1 N
3" order lattice = AF® o Ez[m(ﬂ) 2D
anharmonicity dx 0x ;0% o

Independent Phonons:
Phonon-phonon interaction




Il. Phonon BTE — first-principles results of MgO
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ll. Phonon BTE — first-principles results of MgSiO; perovskite
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ll. Phonon BTE — break-down conditions?

Phonon Gas .
P T
. Beyond
. Phonon Gas ?

Data
- = =1/T model




lI. Phonon BTE — weakness and limitation

Weakness/Limitation of the Kinetic Transport Theory

What is the break-down condition of the phonon gas
approximation?

How to include higher order lattice anharmonicity as T
increases?

Why does the RTA fail at lower T where the magnitude
anharmonicity is small?

How to study disordered lattices with no clearly defined phonon
group velocity?

How to improve numeric efficiency for complex crystals with
large amounts of phonon branches?




lll. Fokker-Planck Equation for Lattice Vibration - stochastic dynamics

Dissipation




PHYSICAL REVIEW B 99, 014306 (2019)

Fokker-Planck equation for lattice vibration: Stochastic dynamics and thermal conductivity
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We propose a Fokker-Planck equation (FPE) theory to describe stochastic fluctuation and relaxation processes
of lattice vibration at a wide range of conditions, including those beyond the phonon gas limit. Using the
time-dependent, multiple state-variable probability function of a vibration FPE, we first denive time-correlation
functions of lattice heat currents in terms of correlation functions among multiple vibrational modes, and subse-
quently predict the lattice thermal conductivity based on the Green-Kubo formalism. When the quasiparticle
kinetic transport theories are valid, this vibration FPE not only predicts a lattice thermal conductivity that
is identical to the one predicted by the phonon Boltzmann transport equation, but also provides additional
microscopic details on the multiple-mode correlation functions. More importantly, when the kinetic theories
become insufficient due to the breakdown of the phonon gas approximation, this FPE theory remains valid to
study the correlation functions among vibrational modes in highly anharmonic lattices with significant mode-
mode interactions and/or in disordered lattices with strongly localized modes. At the limit of weak mode-mode
interactions, we can adopt quantum perturbation theories to derive the drift/diffusion coefficients hased on the
lattice anharmonicity data derived from first-principles methods. As temperature elevates to the classical regime,
we can perform molecular dynamics simulations to directly compute the drift/diffusion coeflicients. Because
these coefficients are defined as ensemble averages at the limit of 81 — 0, we can implement massive parallel
simulation algorithms to take full advantage of the paralleled high-performance computing platforms. A better
understanding of the temperature-dependent drift/diffusion coefficients up to melting temperatures will provide
new insights on microscopic mechanisms that govern the heat conduction through anharmonic and/or disordered
lattices beyond the phonon gas model

DOI: 10.1103/PhysRevB.99.014306

lll. Fokker-Planck Equation for Lattice Vibration




l lll. Fokker-Planck Equation for Lattice Vibration I
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l lll. Fokker-Planck Equation for Lattice Vibration I
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l lll. Fokker-Planck Equation for Lattice Vibration l
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lll. Fokker-Planck Equation for Lattice Vibration — OU condition




l lll. Fokker-Planck Equation for Lattice Vibration — OU condition l
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lll. Fokker-Planck Equation for Lattice Vibration — OU condition
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A middle ground solution between BTE theory and
full GK theory

A unified theory for both weak-and strong mode
interactions

A much more numerically more feasible MD
algorithm at high T

Complementary to on-going efforts of first-principle
heat current calculations




IV. Summary




