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I. Motivation： Predicting Lattice Thermal Conductivity from first-principles 

Basic Physics: Heat Transfer is Ubiquitous
a fundamental non-equilibrium physical process  

Entropy increase !

But how ?
& how fast ?



I. Motivation： Predicting Lattice Thermal Conductivity from first-principles 

Basic Physics: Heat Transfer Mechanisms
Radiation, Convection & Conduction

Conduction:
Solid media  &
Heat carriers, 
such as
electrons, 
phonons, etc.
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Compositions

Structures

Dynamics

Atom Scale

I. Motivation： Understanding Thermal Fluctuation/Dissipation of Lattices



6

I. Motivation： Understanding Thermal Fluctuations of Atomic Lattices

Static vs Dynamic 

Interaction Fluctuation Dissipation



I. Motivation： Predicting Lattice Thermal Conductivity from first-principles 

High ZT (>3)

Applied Physics:  Materials-by-design, 
e.g. thermometric materials



Lower 
Mantle

Upper
Mantle

Transition
Zone

What is the present T profile?
Surface flux ? 
Convection style?

How about Thermal history?

Pure Fe melts at 3000 C at the top of the core
from experiments of Boehler and others

25 C, fixed by solar flux

Thermal processes in deep Earth & outer planets 

I. Motivation： Predicting Lattice Thermal Conductivity from first-principles 
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the EMD simulations were large enough to eliminate finite-size
effects.

B. EMD method

The EMD method for thermal conductivity calculations
is based on the Green-Kubo formula [1,2], which expresses
the (running) thermal conductivity tensor κµν(t) as an inte-
gral of the heat current autocorrelation function (HCACF)
⟨Jµ(0)Jν(t)⟩ with respect to the correlation time t

κµν(t) = 1
kBT 2V

∫ t

0
⟨Jµ(0)Jν(t ′)⟩dt ′. (1)

Here, kB is the Boltzmann constant, T is the absolute tem-
perature of the system, V is the volume, and Jµ is the heat
current in the µ direction. Generally, one can obtain the whole
conductivity tensor, but we are only interested in the diagonal
elements here.

For many-body potentials such as the Tersoff and the SW
potentials used in this work, the heat current J can be expressed
as [29]

J =
∑

i

∑

j ̸=i

r ij

∂Uj

∂ rji

· vi , (2)

where r ij ≡ rj − r i and r i , vi , and Ui are, respectively, the
position, velocity, and potential energy of atom i. Following
Ref. [30], we consider the in-out decomposition of the heat
current for 2D systems, J = J in + Jout, where J in only
includes the terms with vx and vy and Jout only includes
the terms with vz. With this heat current decomposition, the
running thermal conductivity along the x direction can be
naturally decomposed into three terms:

κx(t) = κ in
x (t) + κout

x (t) + κcross
x (t), (3)

where

κ in
x (t) = 1

kBT 2V

∫ t

0
dt ′

〈
J in

x (t ′)J in
x (0)

〉
; (4)

κout
x (t) = 1

kBT 2V

∫ t

0
dt ′

〈
J out

x (t ′)J out
x (0)

〉
; (5)

κcross
x (t) = 2

kBT 2V

∫ t

0
dt ′

〈
J in

x (t ′)J out
x (0)

〉
. (6)

In the EMD simulations, we first equilibrated the system
in the NPT ensemble with a temperature of T = 300 K and a
pressure of p = 0 GPa for 2 ns. After equilibration, we evolved
the system for another 20 ns in the NVE ensemble and recorded
the heat current data for later postprocessing. We performed 50
independent simulations for each material to ensure sufficient
statistics.

C. NEMD method

The NEMD method can be used to calculate the thermal
conductivity κ(Lx) of a system of finite length Lx according
to Fourier’s law

κ(Lx) = Q

|∇T |
, (7)
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FIG. 2. (a) Steady-state temperature profile in the longest (1 µm)
bulk silicon system. A linear fit to the block temperatures excluding
a few blocks around the heat source and sink regions gives the
absolute value of the temperature gradient |∇T |. (b) The energy of
the thermostat (averaged over the source and the sink) as a function
of the time in steady state. The heat transfer rate dE/dt is calculated
as the slope of the linear fit (dashed lines).

in the linear response regime where the temperature gradient
|∇T | across the system is sufficiently small. We generate the
nonequilibrium steady-state heat flux Q by coupling a source
region of the system to a thermostat (realized by using the
Nosé-Hoover chain method [31–33]) with a higher temperature
of 330 K and a sink region to a thermostat with a lower
temperature of 270 K. When steady state is achieved, the heat
flux Q can be calculated from the energy transfer rate dE/dt
between the source/sink and the thermostats

Q = dE/dt

S
, (8)

where S is the cross-sectional area perpendicular to the trans-
port direction. Both the temperature gradient and the energy
transfer rate were determined by linear fitting, as illustrated
in Fig. 2 for one independent simulation in the case of bulk
silicon with a system length of 1 µm. Note that we reported
the system length in the NEMD simulations as the source-sink
distance, not excluding the regions with nonlinear temperature
dependence around the source and sink, which was suggested
to be a reasonable definition according to Howell [34].

In the NEMD simulations, we first equilibrated the system
in the NPT ensemble (T = 300 K and p = 0 GPa) for 2 ns
and then generated the nonequilibrium heat current for 10 ns.
Steady state can be well achieved within 5 ns, and we thus
use the data during the later 5 ns to determine the temperature
gradient and the nonequilibrium heat current. We performed
five independent simulations for each system with a given
length. In all the EMD and NEMD simulations, we use the
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slabs are chosen to be of identical thickness and, hence, vol-
ume. The instantaneous local kinetic temperature Tk in slab k
is given by

Tk5
1

3nkkB (
iPk

nk

min i
2, ~3!

where the sum extends over the nk atoms i in slab k with
masses mi and velocities vi ; kB is Boltzmann’s constant. The
temperature profile is then calculated by time averaging.

Slab 0 is defined as the ‘‘cool’’ slab and slab N/2 as the
‘‘hot’’ slab. The heat flux is generated by exchanging the
velocity vectors of an atom in the cool slab and one in the
hot slab in a way that the temperature increases in the hot
slab and decreases and the cool slab. We simply take the
hottest atom of the cool slab and the coldest atom of the
same mass in the hot slab. The distribution of atomic kinetic
energies is so wide compared to the temperature difference
of the two slabs that we always found the hottest atom in the
cool slab to have more kinetic energy than the coolest atom
in the hot slab. The above mechanism produces an energy
transfer from the cool slab to the hot slab. This leads to a
temperature difference between the cool and the hot slab and
a temperature gradient in the intervening region. It can be
shown that exchanging the velocities of two particles of
equal mass leaves the total linear momentum, the total ki-
netic energy, and the total energy ~in a conservative system!
unchanged, and that velocity transfer by exchange is the only
one which satisfies these conservation laws. The total angu-
lar momentum, however, is not conserved. This should nor-
mally not be a problem, since, except for vacuum boundary
conditions, the angular momentum is anyway not a constant
of motion.

After reaching steady state, the energy transfer imposed
by the unphysical velocity exchange is exactly balanced by
the heat flux in the opposite direction effected by the thermal
conductivity of the system. The imposed heat flux, on the
other hand, is known exactly, since one only has to sum the
‘‘quanta’’ of energy transported by velocity exchanges. The
temperature gradient remaining in the steady state depends
directly on the thermal conductivity. The higher l, the more

efficient the heat transport and the smaller the temperature
gradient between slabs 0 and N/2. The thermal conductivity
is calculated as

l52

(
transfers

m
2 ~nh

22nc
2!

2tLxLy^]T/]z&
. ~4!

The sum is taken over all transfer events during the simula-
tion time t . The subscripts h and c refer to the hot and the
cold particle of identical mass m whose velocities are inter-
changed. In the orthorhombic periodic geometry of this
work, the area through which heat transport takes place is the
product of Lx and Ly , the box lengths in x and y , respec-
tively. The factor of 2 in the denominator arises from the
periodicity of the arrangement ~cf. Fig. 1!. Energy can flow
from the hot slab to the cold slab in two directions, effec-
tively doubling the area available for the flux. Note that all
quantities in Eq. ~4! are known exactly, except the tempera-
ture gradient which has to be obtained as an ensemble aver-
age.

III. COMPUTATIONAL DETAILS

The simulated system consisted of 2592 Lennard-Jones
atoms in an orthorhombic periodic cell of size 10.0587
310.0587330.1762 s3 ~Lennard-Jones reduced units4 are
used throughout this paper!, leading to a number density r*
of 0.849. The cutoff distance was 3s. A Verlet neighbor list
was used and updated every 12 steps. In the update, we take
advantage of the elongated geometry of the cell. Particles are
first indexed according to their z coordinate. Then the search
for neighbors of a particle with index i is only performed
over particles j , where j is within a certain range of i , the
range given by cell size and cutoff.5 A time step Dt* of
6.96531023 was used in connection with a multiple-time-
step scheme based on the velocity-Verlet algorithm;6 long-
range forces ~.2.06s! were evaluated only every 3 time
steps, the switching distance was 0.29 s. The average total
temperature T* @defined analogously to Eq. ~3!, but with a
summation over all atoms# is 0.694. In constant-T simula-
tions, T* is maintained at this value by the weak coupling
scheme7 with a coupling time of 4.64. In constant-energy
~constant-E , microcanonical! simulations no coupling is ap-
plied. They are preceded by a short constant-T run during
which the system is equilibrated to this temperature. The
heat flux is imposed in the z direction and the number of
slabs is 20. The magnitude of the heat flux and of the result-
ing temperature gradient is governed by the intervalW ~num-
ber of time steps! between velocity exchanges. Four different
values of W were used. As it is the purpose of this paper to
present and verify the new algorithm, rather than to calculate
the thermal conductivity of the Lennard-Jones liquid, results
for only one state point are reported.

IV. RESULTS AND DISCUSSION

The periodic application of velocity exchanges leads to a
temperature gradient. This is shown in Fig. 2 for the simula-

FIG. 1. Subdividing the periodic simulation box into slabs. Slab 0 is the
‘‘cool’’ slab, slab N/2 the ‘‘hot’’ slab. Kinetic energy is artificially trans-
ferred from the cool to the hot slab and then flows back by thermal conduc-
tion. The temperature profile is calculated by determining the temperatures
in the intervening slabs ~1 to N/221 and N/211 to N21!.
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conditions, the angular momentum is anyway not a constant
of motion.

After reaching steady state, the energy transfer imposed
by the unphysical velocity exchange is exactly balanced by
the heat flux in the opposite direction effected by the thermal
conductivity of the system. The imposed heat flux, on the
other hand, is known exactly, since one only has to sum the
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temperature gradient remaining in the steady state depends
directly on the thermal conductivity. The higher l, the more

efficient the heat transport and the smaller the temperature
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is calculated as

l52

(
transfers

m
2 ~nh

22nc
2!

2tLxLy^]T/]z&
. ~4!

The sum is taken over all transfer events during the simula-
tion time t . The subscripts h and c refer to the hot and the
cold particle of identical mass m whose velocities are inter-
changed. In the orthorhombic periodic geometry of this
work, the area through which heat transport takes place is the
product of Lx and Ly , the box lengths in x and y , respec-
tively. The factor of 2 in the denominator arises from the
periodicity of the arrangement ~cf. Fig. 1!. Energy can flow
from the hot slab to the cold slab in two directions, effec-
tively doubling the area available for the flux. Note that all
quantities in Eq. ~4! are known exactly, except the tempera-
ture gradient which has to be obtained as an ensemble aver-
age.

III. COMPUTATIONAL DETAILS

The simulated system consisted of 2592 Lennard-Jones
atoms in an orthorhombic periodic cell of size 10.0587
310.0587330.1762 s3 ~Lennard-Jones reduced units4 are
used throughout this paper!, leading to a number density r*
of 0.849. The cutoff distance was 3s. A Verlet neighbor list
was used and updated every 12 steps. In the update, we take
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II. Phonon Boltzmann Transport Equation (BTE)

Why Not Non-equilibrium MD Simulations ? 
Non-Equilibrium Steady States
(a) Direct MD simulations in real-space: Newton’s 2nd Law
(b) Kinetic energy transfer: no additional heat current definition needed  

𝑞"#$ ≠ 0



How to	engineer	thermal	Interfacial	conductance?

Zeng, Dong, and Khodadadi, submitted.
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II. Phonon Boltzmann Transport Equation (BTE)

Why Not Green-Kubo (GK) Method? 

GK Formula
(a) Linear-response Fluatuation-

Dissipation Theorem
(b) Direct equilibrium MD simulations 

in real-space: Newton’s 2nd Law
(c) Definition of heat current needed 



Clathrate framework:
a factor of 10 reduction

Guest rattler:  Another a factor  of 
10 reduction

II. Phonon Boltzmann Transport Equation (BTE)



13

Sir Rudolf Ernst Peierls
06/05/1907 – 09/19/1995

Quasi-particle  Phonon + Kinetic Transport Theory

ℏ𝝎𝑫
𝒌𝑩𝑻

Quantum vs Classical:

II. Phonon Boltzmann Transport Equation (BTE)
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Step 1: harmonic potential + normal modes (eigen-frequencies & eigen-vectors)

Step 2: K-space dispersion relation + quantum particles (phonons)

II. Phonon Boltzmann Transport Equation (BTE)
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Walter Kohn

• DFT theory first proposed 
in 1960s 

• Nobel Prize in Chemistry 
awarded in 1998. 

First-principles, no fitting parameters !

II. Phonon Boltzmann Transport Equation (BTE)



Anharmonic effects:		damped	oscillators,	phonon	scatterings	

Yes, DFT is capable 
to accurately describe 
the 3rd order lattice 
anharmonicity.

II. Phonon Boltzmann Transport Equation (BTE)
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Phonon	gas	model
phonon-phonon	scattering

First-principles		calculations

2nd order	force
constant	matrix

3rd order	lattice
anharmonicity

Quantum	Scattering	Theory

Independent	Phonons:	 	
Phonon-phonon	 interaction	

€ 

φij =
∂ 2E
∂xi∂x j

€ 

Aijk =
∂ 3E

∂xi∂x j∂xk

€ 

cV ,vg

€ 

1
τ = 1

τ anh
+ 1

τ iso

  

€ 

κ =
1
3

cV (i,
 q )vg

2(i,  q )τ(i,  q )
i,  q 
∑

  

€ 

1
τ
∝Pi

j =
2π


f ΔH i
2
δ(ε f −εi)

€ 

ΔHanh =
1
6

Aαi0,βjl,γkl 'Δxαi0ΔxβjlΔxγkl '
γkl '
∑

βjl
∑

αi
∑

€ 

ΔH iso =
1
2

[m(il) −m (i)]xα
2(il)

αil
∑

More details: (1) Tang & Dong, PEPI 2009; (2)Tang and Dong, PNAS 2010

II. Phonon BTE – first-principles implementation 



Fe-free MgO bulk crystals: Tang and Dong, PEPI 2009; Tang and Dong, PNAS 2010

Quick Summary:
(i) Good agreement with experiments 
(ii) Useful information on heat conducting properties of individual 

phonons; e.g. useful to estimate grain boundary scattering
(iii) Well tested numerical convergence. 

II. Phonon BTE – first-principles results of MgO



Pv-MgSiO3 perovskite: Tang et al GRL 2014 

1.5 millions of 
CPU-hours 

massive 
parallelization 

II. Phonon BTE – first-principles results of MgSiO3 perovskite 



• High T?

• Amorphous?

What is the quantitative break-down criteria ? 

II. Phonon BTE – break-down conditions?
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II. Phonon BTE – weakness and limitation 
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Interaction Fluctuation Dissipation

Langevin Equation

Einstein Relation

dissipation fluctuation

Brownian motion

III. Fokker-Planck Equation for Lattice Vibration - stochastic dynamics 
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A theory of stochastic 
dynamics 
Modeling  thermal 
fluctuation & relaxation 
processes in  lattice 
vibration with a focus 
on time-correlation 
functions among modes  

Not a transport theory 
Combining with the GK 
formalism to model bulk
thermal conductivity based 
on the predicted mode
time-correlation functions,
i.e. GK+FPE  

III. Fokker-Planck Equation for Lattice Vibration 
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• Stochastic Processes
• Transition from one micro-state to another
• P is the time-evolving  probability  distribution  function
• Not only expectation values, but also fluctuation around 

the expectation values  

drifting

diffusion

III. Fokker-Planck Equation for Lattice Vibration 



Fluctuation-Dissipation	Theorem/GK	formula
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Vibration FPE predicts:
o Expectation values
o Fluctuation  --> correlation functions

III. Fokker-Planck Equation for Lattice Vibration 
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Ornstein-Uhlenbeck (OU)	condition

III. Fokker-Planck Equation for Lattice Vibration  
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Single Phonon Mode Relaxation Time Approximation (RTA)

III. Fokker-Planck Equation for Lattice Vibration – OU condition 
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Phonon	Mode-Mode	Correlation	Functions

Two-phonon time-correlation functions:: self v.s. cross

III. Fokker-Planck Equation for Lattice Vibration – OU condition 
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Multi-phonon time-correlation functions

III. Fokker-Planck Equation for Lattice Vibration – OU condition 
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III. Fokker-Planck Equation for Lattice Vibration – non OU condition 



IV.	Summary

• Phonon Boltzmann Transport Equation Theory
• State-of-the-art
• Implemented with first-principles DFT method
• Based on the phonon gas model (PGM) 

assumption
• Valid only for crystals, i.e. group velocity defined

• Vibration Fokker-Planck Equation Theory
• A new paradigm 
• Consistent with the BTE results within PGM
• Applicable beyond PGM
• Practical with first-principles implementation
• Connecting with new experimental measurements?


