List of COS701 projects (2024)

- 1. Generate N randomly distributed points inside a three-dimensional cubic box of length L so that each point satisfies the following conditions simultaneously:
 - a) The distance (r_{ij}) between any two points i and j is such that $r_{ij} \ge r_1$;
 - b) None of the distances, r_{ij} , should lie between r_2 and r_3 .

Assume
$$N = 10,000$$
, $L = 60$, $r_1 = 2.0$, $r_2 = 2.7$ and $r_3 = 3.0$

- 2. Write a compute program to calculate the number of n-member irreducible rings that are present in the 3-dimensional random network listed in file 'xyz1000.txt'. Assume n = 3, 4, 5, and 6. A ring is called irreducible when it cannot be further subdivided into a smaller set of rings.
- 3. Write a computer program (in Fortran/C) to generate the permutation of k distinct integers without using recursion. Explain your algorithm in detail. Discuss the case of non-distinct integers. Assume k = 10 to 15.
- 4. Write a computer program that uses a linear combination of Gaussian functions to fit the data given in file 'dos.dat'. Discuss the quality of fit (with figures) for a varying number of Gaussian functions. Use of ready-made nonlinear fit routines/functions is permitted but not encouraged.
- 5. Generate N randomly distributed points inside a three-dimensional cubic box of length L so that the distance between any two points, r_{ij} , is greater than or equal to $r_c = 2$. Now construct a random matrix H_{ij} from this network as follows:

a)
$$H_{ij} = 0$$
 for $i = j$

b)
$$H_{ij} = h_0 \exp\left[-\frac{(r_{ij} - r_1)^2}{2\sigma^2}\right]$$
 for $i \neq j$,

Assume
$$r_1 \in [r_c - 3\sigma, r_c + 3\sigma]$$
, $\sigma = 0.1r_c$, $N = 50,000$, $L = 100$ and $h_0 = 1$ to 5.

Calculate the distribution of eigenvalues (ϵ_i) of H and their spacing, $\delta \epsilon = \epsilon_{i+1} - \epsilon_i$ for a few representative values of r_1 , σ and h_0 .