Problem - 0 (Spring 2024)

Time allotted: Two weeks

1. The error function is defined as

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Show that the derivative of $\operatorname{erf}(x)$ is given by

$$
\frac{d}{d x}[\operatorname{erf}(x)]=\frac{2}{\sqrt{\pi}} e^{-x^{2}}
$$

2. a) Consider the integrals below

$$
X(s)=\int_{0}^{s} d t \cos \left(\frac{1}{2} \pi t^{2}\right)
$$

and

$$
Y(s)=\int_{0}^{s} d t \sin \left(\frac{1}{2} \pi t^{2}\right)
$$

For a given value of s, say $s=10$, plot $Y(s)$ vs. $X(s)$. You may use MatLab/Python functions to obtain the value of the integrals for the purpose of plotting.
b) Verify analytically or numerically that for $s \rightarrow \infty$, the integrals approach to $1 / 2$.
3. Plot the following functions:
a) $\Theta\left(1-x^{2}\right)$ vs. x
b) $x \Theta(\sin (x))$ vs. x
c) $\Theta(\tanh (x))$
4. Prove that

$$
\delta(g(x))=\sum_{i=1}^{n} \frac{\delta\left(x-x_{i}\right)}{\left|g^{\prime}(x)\right|}
$$

where x_{i} are the zeroes of the function $g(x)$.

